MODELING OF SECURITY SYSTEMS FOR CRITICAL INFRASTRUCTURE FACILITIES
Ключові слова:
concept of a multi-loop security system, concept of a multi-loop security system, socio-cyber-physical systems, socio-cyber-physical systems, post-quantum security mechanisms, post-quantum security mechanismsКороткий опис
Розвиток технологій Industry 4.0 базується на стрімкому зростанні обчислювальних можливостей мобільних бездротових технологій, що дозволило значно розширити спектр цифрових послуг і сформувати конгломерат соціо-кібер-фізичних систем і смарт-технологій. У першому розділі розглядаються питання побудови систем безпеки на основі запропонованої концепції багатоконтурних систем безпеки з урахуванням гібридності та синергії сучасних цільових кібератак, їх інтеграції з методами соціальної інженерії. Такий підхід не тільки підвищує рівень безпеки, але й формує об’єктивний підхід до використання постквантових механізмів безпеки на основі запропонованих моделей Лотки-Вольтерра.
У другому розділі аналізуються особливості функціонування соціальних інтернет-сервісів та встановлюється їх роль у забезпеченні інформаційної безпеки держави. Запропоновано підхід до виявлення ознак загроз у текстовому контенті соціальних інтернет-сервісів, що дозволить оперативно реагувати на зміни ситуації та ефективно протидіяти таким загрозам. Розроблено класифікатор профілів інформаційної безпеки користувачів соціальних інтернет-сервісів для оцінки рівня їх небезпеки як потенційних учасників дезінформаційних кампаній. Запропоновано методику виявлення та оцінки інформаційно-психологічного впливу на спільноти користувачів послуг. На прикладі громадських рухів розглянуто моделі конфліктної взаємодії груп користувачів у соціальних інтернет-сервісах. Для ефективної протидії загрозам інформаційній безпеці держави пропонується використовувати концепцію синергічної взаємодії користувача та процесів самоорганізації у віртуальній спільноті. Особливу увагу приділено протидії маніпулюванню громадською думкою в процесі прийняття рішень користувачами соціальних інтернет-сервісів.
У третьому розділі пропонується біометрична система безпеки, яка працює для автентифікації користувачів на основі порівняння їхніх відбитків пальців і певних шаблонів, що зберігаються в біометричній базі даних. Розроблено метод визначення контуру на основі проходження кривої та фільтруючої функції контурних ліній. Детально проаналізовано етап ідентифікації скелета. Розроблено метод Атеба-Габора з розрідженням хвилі. Проаналізовано ефективність скелетних алгоритмів, таких як алгоритм проріджування Жанга-Суена, алгоритм Хілдіча та метод Атеба-Габора з децимацією хвилі. Представлені результати експериментів з біометричними відбитками пальців на основі бази даних NIST Special Database 302 показали ефективність запропонованого методу. Програмне забезпечення та мікропрограми були розроблені з використанням Arduino Nano.
ISBN 978-617-7319-57-2 (on-line)
ISBN 978-617-7319-56-5 (print)
------------------------------------------------------------------------------------------------------------------
Як цитувати: Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M., Hrytsyk, V., Milov, O. et. al.; Yevseiev, S., Hryshchuk, R., Molodetska, K., Nazarkevych, M. (Eds.) (2022). Modeling of security systems for critical infrastructure facilities. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 196. doi: http://doi.org/10.15587/978-617-7319-57-2
------------------------------------------------------------------------------------------------------------------
Індексація:
Розділи
Посилання
Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) (2021). Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 188. doi: http://doi.org/10.15587/978-617-7319-31-2
Yevseiev, S., Melenti, Y., Voitko, O., Hrebeniuk, V., Korchenko, A., Mykus, S. et. al. (2021). Development of a concept for building a critical infrastructure facilities security system. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 63–83. doi: http://doi.org/10.15587/1729-4061.2021.233533
Stoddart, K. (2016). UK cyber security and critical national infrastructure protection. International Affairs, 92 (5), 1079–1105. doi: http://doi.org/10.1111/1468-2346.12706
Konstantas, J. (2016). Dam Hackers! The Rising Risks to ICS and SCADA Environments. Security Week. Available at: http://www.securityweek.com/dam-hackers-rising-risks-ics-and-scada-environments
Westervelt, R. (2012). Old Application Vulnerabilities, Misconfigurations Continue to Haunt. TechTarget. Available at: http://searchsecurity.techtarget.com/feature/Old-Application-Vulnerabilities-Misconfigurations-Continue-to-Haunt
Ashford, W. (2014). Industrial control systems: What are the security challenges? Computer Weekly. Available at: http://www.computerweekly.com/news/2240232680/Industrial-control-systems-What-are-the-security-challenges
Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et. al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105), 6–19. doi: https://doi.org/10.15587/1729-4061.2020.205702
Hryshchuk, R., Yevseiev, S., Shmatko, A. (2018). Construction methodology of information security system of banking information in automated banking systems. Vienna: Premier Publishing s. r. o.doi: http://doi.org/10.29013/r.hryshchuk_s.yevseiev_a.shmatko.cmissbiabs.284.2018
Kondratov S., Bobro D., Horbulin V. et. al.; Sukhodolia, O. (2017). Developing The Critical Infrastructure Protection System in Ukraine. Kyiv: NISS.
Rinaldi, S. M., Peerenboom, J. P., Kelly, T. K. (2001). Identifying, Understanding, and Analyzing Critical Infrastructure Dependencies. IEEE Control Systems Magazine, 21 (6), 11–25. doi: http://doi.org/10.1109/37.969131
Casalicchio, E., Galli, E., Tucci, S.; Setola, R.., Geretshuber, S. (Eds.) (2009). Modeling and Simulation of Complex Interdependent Systems: A Federated Agent-Based Approach. CRITIS 2008. LNCS. Heidelberg: Springer, 5508, 72–83. doi: http://doi.org/10.1007/978-3-642-03552-4_7
Haimes, Y. Y., Jiang, P. (2001). Leontief-Based Model of Risk in Complex Interconnected Infrastructures. Journal of Infrastructure Systems, 7 (1), 1–12. doi: http://doi.org/10.1061/(asce)1076-0342(2001)7:1(1)
Barker, K., Santos, J. R. (2010). Measuring the efficacy of inventory with a dynamic input–output model. International Journal of Production Economics, 126 (1), 130–143. doi: http://doi.org/10.1016/j.ijpe.2009.08.011
Santos, J. R. (2008). Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial & Management Optimization, 4 (3), 489–510. doi: http://doi.org/10.3934/jimo.2008.4.489
Jung, J. (2009). Probabilistic Extension to the Inoperability Input-Output Model: P-IIM. Charlottesville.
Santos, J. R., Haimes, Y. Y., Lian, C. (2007). A Framework for Linking Cybersecurity Metrics to the Modeling of Macroeconomic Interdependencies. Risk Analysis, 27 (5), 1283–1297. doi: http://doi.org/10.1111/j.1539-6924.2007.00957.x
Nieuwenhuijs, A., Luiijf, E., Klaver, M.; Papa, M., Shenoi, S. (Eds.) (2008). Modeling Dependencies Critical Infrastructures. Critical Infrastructure Protection II: Proceedings of the Second Annual IFIP Working Group 11.10 International Conference on Critical Infrastructure Protection. IFIP. Springer, Heidelberg, 290, 205–213. doi: http://doi.org/10.1007/978-0-387-88523-0
Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S. D., Setola, R. (2008). Modelling interdependent infrastructures using interacting dynamical models. International Journal of Critical Infrastructures, 4 (1/2), 63–79. doi: http://doi.org/10.1504/ijcis.2008.016092
Panzieri, S., Setola, R. (2008). Failures propagation in critical interdependent infrastructures. International Journal of Modelling, Identification and Control, 3 (1), 69–78. doi: http://doi.org/10.1504/ijmic.2008.018186
Rinaldi, S. M. (2004). Modeling and Simulating Critical Infrastructures and Their Interdependencies. Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS 2004). IEEE Computer Society Press, Big Island. doi: http://doi.org/10.1109/hicss.2004.1265180
Forrester, J. W. (1961). Industrial Dynamics. Waltham: Pegasus Communications.
Forrester, J. W. (1961). Principles of Systems. Waltham: Pegasus Communications.
Gonzalez, J. J., Sarriegi, J. M., Gurrutxaga, A.; Lo´pez, J. (Ed.) (2006). A Framework for Conceptualizing Social En- gineering Attacks. CRITIS 2006. LNCS, vol. Heidelberg: Springer, 4347, 79–90. doi: http://doi.org/10.1007/11962977_7
Bier, V. M., Ferson, S., Haimes, Y. Y., Lambert, J. H., Small, M. J. (2004). Risk of Extreme and Rare Events: Lessons from a Selection of Approaches. Risk Analysis and Society: An Interdisciplinary Characterization of the Field. Cambridge: Cambridge University Press, 74–118. doi: http://doi.org/10.1017/cbo9780511814662.004
Bier, V. M. (2001). Game Theoretic Models for Critical Infrastructure Protection. Abstracts of the 2001 Society for Risk Analysis Annual Meeting “Risk Analysis in an Interconnected World”.
von Neumann, J., Morgenstern, O. (1947). Theory of Games and Economic Behavior. Princeton: Princeton University Press.
Burke, D. A. (1999). Towards a Game Theory Model of Information Warfare. Air Force Institute of Technology, Wright-Patterson Air Force Base, 117.
Liu, D., Wang, X., Camp, J. (2008). Game-theoretic modeling and analysis of insider threats. International Journal of Critical Infrastructure Protection, 1, 75–80. doi: http://doi.org/10.1016/j.ijcip.2008.08.001
Jenelius, E., Westin, J., Holmgren, Å. J. (2010). Critical infrastructure protection under imperfect attacker perception. International Journal of Critical Infrastructure Protection, 3 (1), 16–26. doi: http://doi.org/10.1016/j.ijcip.2009.10.002
Yoshida, M., Kobayashi, K. (2010). Disclosure Strategies for Critical Infrastructure against Terror Attacks. Proceedings of the 2010 IEEE International Conference on Systems Man and Cybernetics (SMC 2010). Istanbul: IEEE Press, 3194–3199. doi: http://doi.org/10.1109/icsmc.2010.5642277
Major, J. A. (2002). Advanced Techniques for Modeling Terrorism Risk. The Journal of Risk Finance, 4 (1), 15–24. doi: http://doi.org/10.1108/eb022950
Lakdawalla, D. N., Zanjani, G. (2004). Insurance, Self-Protection, and the Economics of Terrorism. Tech. Rep. WR-171-ICJ, RAND Corporation. Santa Monica.
Woo, G. (2002). Quantitative Terrorism Risk Assessment. The Journal of Risk Finance, 4 (1), 7–14. doi: http://doi.org/10.1108/eb022949
Bier, V., Oliveros, S., Samuelson, L. (2007). Choosing What to Protect: Strategic Defensive Allocation against an Unknown Attacker. Journal of Public Economic Theory, 9 (4), 563–587. doi: http://doi.org/10.1111/j.1467-9779.2007.00320.x
Sandler, T., Siqueira, K. (2008). Games and Terrorism. Simulation & Gaming, 40 (2), 164–192. doi: http://doi.org/10.1177/1046878108314772
Bolloba´s, B. (1998). Modern Graph Theory. Graduate Texts in Mathematics, Vol. 184. Berlin: Springer.
Bolloba´s, B., Kozma, R., Miklo´s, D. (Eds.) (2009). Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, 18. Ja´nos Bolyai Mathematical Society and Springer. Budapest.
Albert, R., Baraba´si, A. L. (1999). Emergence of Scaling in Random Networks. Science, 286 (5439), 509–512. doi: http://doi.org/10.1126/science.286.5439.509
Albert, R., Baraba´si, A. L. (2002). Statistical Mechanics of Complex Networks. Reviews of Modern Physics 74 (1), 47–97. doi: http://doi.org/10.1103/revmodphys.74.47
Newman, M. E. J. (2003). The Structure and Function of Complex Networks. SIAM Review, 45 (2), 167–256. doi: http://doi.org/10.1137/s003614450342480
Newman, M., Baraba´si, A. L., Watts, D. J. (Eds.) (2006). The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton: Princeton University Press.
North, M.; Sallach, D., Wolsko, T. (Eds.) (2000). Agent-Based Modeling of Complex Infrastructures. In: Proceedings of the Workshop on Simulation of Social Agents: Architectures and Institutions. University of Chicago and Argonne National Laboratory, Chicago. ANL/DIS/TM-60, 239–250.
Zhu, G.-Y., Henson, M. A., Megan, L. (2001). Dynamic modeling and linear model predictive control of gas pipeline networks. Journal of Process Control, 11 (2), 129–148. doi: http://doi.org/10.1016/s0959-1524(00)00044-5
Han, Z. Y., Weng, W. G. (2010). An integrated quantitative risk analysis method for natural gas pipeline network. Journal of Loss Prevention in the Process Industries, 23 (3), 428–436. doi: http://doi.org/10.1016/j.jlp.2010.02.003
Wolthusen, S. D. (2005). GIS-based Command and Control Infrastructure for Critical Infrastructure Protection. Proceedings of the First IEEE International Workshop on Critical Infrastructure Protection (IWCIP 2005), 40–47. doi: http://doi.org/10.1109/iwcip.2005.12
Patterson, S. A., Apostolakis, G. E. (2007). Identification of Critical Locations Across Multiple Infrastructures for Terrorist Actions. Reliability Engineering & System Safety, 92 (9), 1183–1203. doi: http://doi.org/10.1016/j.ress.2006.08.004
Yevseiev, S., Pohasii, S., Milevskyi, S., Milov, O., Melenti, Y., Grod, I. et. al. (2021). Development of a method for assessing the security of cyber-physical systems based on the Lotka–Volterra model. Eastern-European Journal of Enterprise Technologies, 5 (9 (113)), 30–47. doi: http://doi.org/10.15587/1729-4061.2021.241638
Lippert, K. J., Cloutier, R. (2021). Cyberspace: A Digital Ecosystem. Systems, 9 (3), 48. doi: http://doi.org/10.3390/systems9030048
Mazurczyk, W., Drobniak, S., Moore, S. Towards a Systematic View on Cybersecurity Ecology. Available at: https://arxiv.org/ftp/arxiv/papers/1505/1505.04207.pdf Last accessed: 25.06.2021
Gorman, S. P., Kulkarni, R. G., Schintler, L. A., Stough, R. R. (2004). A Predator Prey Approach to the Network Structure of Cyberspace. Available at: https://www.researchgate.net/publication/255679706_A_predator_prey_approach_to_the_network_structure_of_cyberspace Last accessed: 25.06.2021
Ya dogonyayu, ty ubegayesh’. Chto takoye model' Lotki-Vol'terry i kak ona pomogayet biologam. Available at: https://nplus1.ru/material/2019/12/04/lotka-volterra-model.
Tøndel, I. A., Cruzes, D. S., Jaatun, M. G., Sindre, G. (2022). Influencing the security prioritisation of an agile software development project. Computers & Security, 118, 102744. doi: http://doi.org/10.1016/j.cose.2022.102744
Șcheau, M.-C., Leu, M.-D., Udroiu, C. (2022). At the Intersection of Interests and Objectives in Cybersecurity. Proceedings of the International Conference on Cybersecurity and Cybercrime (IC3), 29–34. doi: http://doi.org/10.19107/cybercon.2022.03
Mohammed, N. Q., Amir, A., Salih, M. H., Ahmad, B. (2022). Design and Implementation of True Parallelism Quad-Engine Cybersecurity Architecture on FPGA. International Journal of Advanced Computer Science and Applications, 13 (1), 719–724. doi: http://doi.org/10.14569/ijacsa.2022.0130183
Nevliudov, I., Yevsieiev, V., Maksymova, S., Filippenko, I. (2020). Development of an architectural-logical model to automate the management of the process of creating complex cyber-physical industrial systems. Eastern-European Journal of Enterprise Technologies, 4 (3 (106)), 44–52. doi: http://doi.org/10.15587/1729-4061.2020.210761
Szymanski, T. H. (2022). The “Cyber Security via Determinism” Paradigm for a Quantum Safe Zero Trust Deterministic Internet of Things (IoT). IEEE Access, 10, 45893–45930. doi: http://doi.org/10.1109/access.2022.3169137
de Kinderen, S., Kaczmarek-Heß, M., Hacks, S. (2022). Towards Cybersecurity by Design: A multi-level reference model for requirements-driven smart grid cybersecurity. ECIS 2022 Research Papers. 89. Available at: https://aisel.aisnet.org/ecis2022_rp/89/
Do Thu, H., Hoang, N. X., Hoang N. V., Du, N. H., Huong, T. T., Phuc Tran, K. (2022). Explainable Anomaly Detection for Industrial Control System Cybersecurity. Available at:: https://www.researchgate.net/publication/360383589_Explainable_Anomaly_Detection_for_Industrial_Control_System_Cybersecurity
KNX Technical Manual 2CKA001473B8668. (2017). KNX Technical Manual. Busch-Presence detector KNX / Busch-Watchdog Sky KNX. Busch-Jaeger Elektro GmbH, 198.
ABB i-bus KNX KNX Security Panel GM/A 8.1 Product Manual (2016). Busch-Watchdog Sky KNX. Busch-Jaeger Elektro GmbH, 648.
Pohasii, S., Yevseiev, S., Zhuchenko, O., Milov, O., Lysechko, V., Kovalenko, O. et. al. (2022). Development of crypto-code constructs based on LDPC codes. Eastern-European Journal of Enterprise Technologies, 2 (9 (116)), 44–59. doi: http://doi.org/10.15587/1729-4061.2022.254545
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A. D. I., Marlow, C., Settle, J. E., Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489 (7415), 295–298. doi: http://doi.org/10.1038/nature11421
Parthasarathy, S., Ruan, Y., Satuluri, V. (2011). Community Discovery in Social Networks: Applications, Methods and Emerging Trends. Social Network Data Analytics, 79–113. doi: http://doi.org/10.1007/978-1-4419-8462-3_4
Madirolas, G., de Polavieja, G. G. (2015). Improving Collective Estimations Using Resistance to Social Influence. PLOS Computational Biology, 11 (11), e1004594. doi: http://doi.org/10.1371/journal.pcbi.1004594
Sun, J., Tang, J. (2011). A survey of models and algorithms for social influence analysis Social Network Data Analytics, 177–214. doi: http://doi.org/10.1007/978-1-4419-8462-3_7
Anagnostopoulos, A., Kumar, R., Mahdian, M. (2008). Influence and correlation in social networks. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’08), 7–15. doi: http://doi.org/10.1145/1401890.1401897
Goyal, A., Bonchi, F., Lakshmanan, L. V. (2010). Learning influence probabilities in social networks. In Proceedings of the 3st ACM International Conference on Web Search and Data Mining (WSDM’10), 207–217. doi: http://doi.org/10.1145/1718487.1718518
Xiang, R., Neville, J., Rogati, M. (2010). Modeling relationship strength in online social networks. In Proceeding of the 19th international conference on World Wide Web (WWW’10), 981–990. doi: http://doi.org/10.1145/1772690.1772790
Scripps, J., Tan, P.-N., Esfahanian, A.-H. (2009). Measuring the effects of preprocessing decisions and network forces in dynamic network analysis. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’09), 747–756. doi: http://doi.org/10.1145/1557019.1557102
Tang, L., Liu, H. (2009). Relational learning via latent social dimensions. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’09), 817–826. doi: http://doi.org/10.1145/1557019.1557109
Horovyi, V. M., Onyshchenko, O. S., Polovynchak, Yu. M., Horova, S. V., Kostenko, L. Y., Matviichuk, A. V. et. al. (2015). Tekhnolohii rozvytku i zakhystu natsionalnoho informatsiinoho prostoru. Kyiv: NBUV, 296.
Konakh, V. K. (2014). Natsionalnyi informatsiinyi prostir Ukrainy: problemy formuvannia ta derzhavnoho rehuliuvannia. Kyiv: NISD.
Onyshchenko, O. S., Horovyi, V. M., Popyk, V. I. (2014). Sotsialni merezhi yak instrument vzaiemovplyvu vlady ta hromadianskoho suspilstva. Kyiv: NAN Ukrainy, Nats. b-ka Ukrainy im. V. I. Vernadskoho, 260.
Danik, Yu., Hryshchuk, R., Samchyshyn, O. (2015). Mobile social Internet services as the modern mass communication. Ukrainian Scientific Journal of Information Security, 21 (1), 16–20.
Peleshchyshyn, A. M., Sierov, Yu. O., Berezko, O. L., Peleshchyshyn. O. P., Tymovchak-Maksymets, O. Yu., Markovets, O. V. (2012). Protsesy upravlinnia interaktyvnymy sotsialnymy komunikatsiiamy v umovakh rozvytku informatsiinoho suspilstva. Lviv, Vyd-vo Lviv. Politekhniky, 368.
Hryshchuk, R. V., Danyk, Yu. H. (2016). Osnovy kibernetychnoi bezpeky. Zhytomyr: ZhNAEU, 636.
Hryshchuk, R. V., Molodetska-Hrynchuk, K. V. (2017). Postanovka problemy zabezpechennia informatsiinoi bezpeky derzhavy u sotsialnykh internet-servisakh. Suchasnyi zakhyst informatsii, 3 (31), 86–96.
Tufekci, Z., Wilson, C. (2012). Social Media and the Decision to Participate in Political Protest: Observations From Tahrir Square. Journal of Communication, 62 (2), 363–379. doi: http://doi.org/10.1111/j.1460-2466.2012.01629.x
Savanevskyi, M. (2013). #ievromaidan: ukrainska tsyfrova revoliutsiia ta ostannii shans analohovym politykam staty tsyfrovymy. Watcher. Available at: http://watcher.com.ua/2013/11/29/yevromaydan-ukrayinska-tsyfrova-revolyutsiya-ta-ostanniy-shans-analohovym-politykam-staty-tsyfrovymy/
Barovska, A. (2016). Informatsiini vyklyky hibrydnoi viiny: kontent, kanaly, mekhanizmy protydii. Kyiv: NISD, 109.
Holloway, M. (2017). How Russia weaponized social media in the Crimea. Realcleardefense.com. Available at: https://www.realcleardefense.com/articles/2017/05/10/how_russia_weaponized_social_media_in_crimea_111352.html
Perry, B. (2015). Non-linear warfare in Ukraine: the critical role of information operations and special operations. Small Wars Journal, 11 (1). Available at: http://smallwarsjournal.com/jrnl/art/non-linear-warfare-in-ukraine-the-critical-role-of-information-operations-and-special-opera
Obzor sotsyalnykh setei. Leto, 2016 (2016). Slideshare. Available at: https://www.slideshare.net/adproisobar/2016-64479518
Pro zastosuvannia personalnykh spetsialnykh ekonomichnykh ta inshykh obmezhuvalnykh zakhodiv (sanktsii) (2017). Ukaz Prezydenta Ukrainy No. 133/2017. Available at: http://www.president.gov.ua/documents/1332017-21850
Hryshchuk, R., Molodetska-Hrynhchuk, K. (2018). Methodological Foundation of State’s Information Security in Social Networking Services in Conditions of Hybrid War. Information & Security: An International Journal, 41, 61–79. doi: http://doi.org/10.11610/isij.4105
Molodetska-Hrynchuk, K. (2017). Outreaches content tracing technique for social networking services. Radio electronics, Computer Science, Control, 2 (41), 117–126. doi: http://doi.org/10.15588/1607-3274-2017-2-13
Manning, Chr., Raghavan, P., Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. doi: http://doi.org/10.1017/cbo9780511809071
Wardle, C., Derakhshan, H. (2017). Information disorder: toward an interdisciplinary framework for research and policy making. Available at: https://rm.coe.int/information-disorder-toward-an-interdisciplinary-framework-for-researc/168076277c
Barabash, O. V., Hryshchuk, R. V., Molodetska-Hrynchuk, K. V. (2018). Identification threats to the state information security in the text content of social networking services. Science-Based Technologies, 38 (2), 232–239. doi: http://doi.org/10.18372/2310-5461.38.12855
Pennacchiotti, M., Popescu, A.-M. (2011). Democrats, republicans and starbucks afficionados. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’11. doi: http://doi.org/10.1145/2020408.2020477
Beller, C., Knowles, R., Harman, C., Bergsma, S., Mitchell, M., Van Durme, B. (2014). I'm a Belieber: social roles via self-identification and conceptual attributes. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 181–186. doi: http://doi.org/10.3115/v1/p14-2030
Schwartz, H. A., Eichstaedt, J. C., Kern, M. L., Dziurzynski, L., Ramones, S. M., Agrawal, M. et. al. (2013). Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. PLoS ONE, 8 (9), e73791. doi: http://doi.org/10.1371/journal.pone.0073791
Gore, R. J., Diallo, S., Padilla, J. (2015). You Are What You Tweet: Connecting the Geographic Variation in America’s Obesity Rate to Twitter Content. PLOS ONE, 10 (9), e0133505. doi: http://doi.org/10.1371/journal.pone.0133505
Molodetska, K., Tymonin, Y. (2019). System-dynamic models of destructive informational influence in social networking services. International Journal of 3D Printing Technologies and Digital Industry, 3 (2), 137–146.
Pasca, M. (2007). What you seek is what you get: Extraction of class attributes from query logs. Proceedings of IJCAI.
Faraz, A. (2016). A Comparison of Text Categorization Methods. International Journal on Natural Language Computing, 5 (1), 31–44. doi: http://doi.org/10.5121/ijnlc.2016.5103
Fernández-Martínez, F., Zablotskaya, K., Minker, W. (2012). Text categorization methods for automatic estimation of verbal intelligence. Expert Systems with Applications, 39 (10), 9807–9820. doi: http://doi.org/10.1016/j.eswa.2012.02.173
Natekin, A., Knoll, A.(2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7 (21), 1–21. doi: http://doi.org/10.3389/fnbot.2013.00021
Freund, Y., Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. Journal of Computer and System Sciences, 55 (1), 119–139. doi: http://doi.org/10.1006/jcss.1997.1504
"MIB Datasets" (2017). Mib.projects.iit.cnr.it. Available at: http://mib.projects.iit.cnr.it/dataset.html
Hryshchuk, R. V., Mamariev, V. M., Molodetska-Hrynchuk K. V. (2017). Klasyfikatsiia profiliv informatsiinoi bezpeky aktoriv v sotsialnykh internet-servisakh (na prykladi mikroblohu Twitter). Informatsiini tekhnolohii ta kompiuterna inzheneriia, 2, 12–19.
Cresci, S., Pietro, R. Di, Petrocchi, M., Spognardi, A., Tesconi, M. (2015). Fame for sale: efficient detection of fake Twitter followers. Decision Support Systems, 80, 56–71. doi: http://doi.org/10.48550/arXiv.1509.04098
Milan, S. (2015). From social movements to cloud protesting: the evolution of collective identity. Information, Communication & Society, 18 (8), 887–900. doi: http://doi.org/10.1080/1369118x.2015.1043135
Panchenko, V. M. (2009). Linhvostatystychni oznaky manipuliuvannia suspilnoiu svidomistiu v zasobakh masovoi komunikatsii. Suchasni informatsiini tekhnolohii u sferi bezpeky ta oborony, 1 (4), 81–85.
Molodetska, K., Brodskiy, Yu., Fedushko, S. (2020). Model of assessment of information-psychological influence in social networking services based on information insurance. Control, Optimisation and Analytical Processing of Social Networks : Proc. of the 2nd International Workshop on COAPSN-2020, 2616, 187–198. Available at: http://ceur-ws.org/Vol-2616/paper16.pdf
Broniatowski, D. A., Jamison, A. M., Qi, S., AlKulaib, L., Chen, T., Benton, A. et. al. (2018). Weaponized Health Communication: Twitter Bots and Russian Trolls Amplify the Vaccine Debate. American Journal of Public Health, 108 (10), 1378–1384. doi: http://doi.org/10.2105/ajph.2018.304567
The official website of the World Health Organization. Available at: https://www.who.int/home
Molodetska, K., Tymonin, Y., Melnychuk, I. (2020). The conceptual model of information confrontation of virtual communities in social networking services. International Journal of Electrical and Computer Engineering (IJECE), 10 (1), 1043–1052. doi: http://doi.org/10.11591/ijece.v10i1.pp1043-1052
Leask, J., Kinnersley, P., Jackson, C., Cheater, F., Bedford, H., & Rowles, G. (2012). Communicating with parents about vaccination: a framework for health professionals. BMC Pediatrics, 12 (1). doi: http://doi.org/10.1186/1471-2431-12-154
Hryshchuk, R., Molodetska, K., Tymonin, Yu. (2019). Modelling of conflict interaction of virtual communities in social networking services on an example of anti-vaccination movement. Conflict Management in Global Information Networks : Proc. of the International Workshop on CMiGIN-2019, 2588, 250–264.
Kolesnykov, A. A. (2005). Synerhetycheskoe metody upravlenyia slozhnymy systemamy: teoryia systemnoho synteza. Edytoral URSS.
Hryshchuk, R., Molodetska, K. (2017). Synergetic control of social networking services actors’ interactions. Recent Advances in Systems, Control and Information Technology. Springer International Publishing, 543, 34–42. doi: http://doi.org/10.1007/978-3-319-48923-0_5
Hryshchuk, R., Molodetska, K., Serov, Y. (2019). Method of improving the information security of virtual communities in social networking services. Proc. of the 1st International Workshop on Control, Optimisation and Analytical Processing of Social Networks, 2392, 23-41.
Wu, B., Cheng, T., Yip, T. L., Wang, Y. (2020). Fuzzy logic based dynamic decision-making system for intelligent navigation strategy within inland traffic separation schemes. Ocean Engineering, 197, 106909. doi: http://doi.org/10.1016/j.oceaneng.2019.106909
Molodetska, K., Solonnikov, V., Voitko, O., Humeniuk, I., Matsko, O., Samchyshyn, O. (2021). Counteraction to information influence in social networking services by means of fuzzy logic system. International Journal of Electrical and Computer Engineering, 11 (3), 2490–2499. doi: http://doi.org/10.11591/ijece.v11i3.pp2490-2499
Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences, 38 (1), 23–34. doi: http://doi.org/10.1016/j.cageo.2011.04.012
Molodetska, K., Tymonin, Y., Markovets, O., Melnychyn, A. (2020). Phenomenological model of information operation in social networking services. Indonesian Journal of Electrical Engineering and Computer Science, 19 (2), 1078. doi: https//doi.org/10.11591/ijeecs.v19.i2.pp1078-1087
Synko, A., Molodetska, K. (2021). Application of Clusterization for Analysis of Virtual Community Users. Information Technologies & Applied Sciences: Proc. of the Symposium on IT&AS 2021, 2824, 9–19.
How the Social Networks Affect Politics in Ukraine: Conclusions of the Research (2020). Internews.Ua. Avaliable at: https://internews.ua/opportunity/social-network-research
Criminal complaint. Official website of the U.S. Department of Justice (DOJ). Available at: https://www.justice.gov/opa/press-release/file/1102316/download
Peleshchyshyn, O., Molodetska, K., Solianyk, A., Kravets, R. (2019). Modelling the complex of automation of company marketing activity in online communities. Conflict Management in Global Information Networks: Proc. of the International Workshop on CMiGIN 2019, 2588, 301–310.
Maddux, R. D. (2014). Arrow's theorem for incomplete relations. Journal Of Logical And Algebraic Methods In Programming, 83 (2), 235–248. doi: http://doi.org/10.1016/j.jlap.2014.02.012
Cato, S. (2018). Incomplete decision-making and Arrow’s impossibility theorem. Mathematical Social Sciences, 94, 58–64. doi: http://doi.org/10.1016/j.mathsocsci.2017.10.002
Brindley, P., Cameron, R. W., Ersoy, E., Jorgensen, A., Maheswaran, R. (2019). Is more always better? Exploring field survey and social media indicators of quality of urban greenspace, in relation to health. Urban Forestry & Urban Greening, 39, 45–54. doi: http://doi.org/10.1016/j.ufug.2019.01.015
Public opinion poll (2020). Ilko Kucheriv Democratic Initiatives Foundation. Kyiv.
Karpov, А. V. (2009). Theorem on the impossibility of proportional representation. HSE Economic Journal, 4, 596–615.
Arrow, K. J. (1950). A Difficulty in the Concept of Social Welfare. Journal of Political Economy, 58 (4), 328–346. doi: http://doi.org/10.1086/256963
Vasiljev, S. (2008). Manipulability of a voting. SSRN Electronic Journal, 2008. doi: http://doi.org/10.2139/ssrn.1118627
Molodetska, K. (2020). Counteraction to strategic manipulations on actors’ decision making in social networking services. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), 266–269. doi: http://doi.org/10.1109/atit50783.2020.9349347
Khromov, D. V. (2013). Models and algorithms for constructing curvilinear skeletons of spatial forms. Moscow: MV Lomonosov Moscow State University, 23.
Hrytsyk, V., Nazarkevych, M. (2021). Research on the Increase of Information Theory in the Era of the Ending of Silicon Electronics and New Types of Risks. CEUR Workshop Proceedingsthis, 3101, 65–82.
Li, J., Glover, J. D., Zhang, H., Peng, M., Tan, J., Mallick, C. B. et. al. (2022). Limb development genes underlie variation in human fingerprint patterns. Cell, 185 (1), 95–112. doi: http://doi.org/10.1016/j.cell.2021.12.008
Hrytsyk, V., Grondzal, A., Bilenkyj, A. (2015). Augmented reality for people with disabilities. Computer Sciences and Information Technologies, 188–191. doi: http://doi.org/10.1109/stc-csit.2015.7325462
Prasad, M. V. D., Krishna, N. S., Ahammad, S. H., Kumar, G. N. S. (2020). Security Systems For Identification And Detection Fingerprint Based On Cnn And Fcn. International Journal of Scientific & Technology Research 9 (2), 1668–1672.
Bontrager, P., Togelius, J., Memon, N. (2017). Deepmasterprint: Generating fingerprints for presentation attacks. arXiv preprint arXiv: 1705.07386.
Bontrager, P., Roy, A., Togelius, J., Memon, N., & Ross, A. (2018, October). Deepmasterprints: Generating masterprints for dictionary attacks via latent variable evolution. 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 1–9. doi: http://doi.org/10.1109/btas.2018.8698539
Teslyuk, V. M., Beregovskyi, V. V., Pukach, A. I. (2013). Development of smart house system model based on colored Petri nets. 2013 XVIIIth International Seminar / Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 205-208.
Drets, G., Liljenström, H. (1998). Fingerprint Sub-Classification and Singular Point Detection. International Journal of Pattern Recognition and Artificial Intelligence, 12 (4), 407–422. doi: http://doi.org/10.1142/s0218001498000269
Ali, S. M., Al-Zewary, M. S. (1997). A new fast automatic technique for fingerprints recognition and identification. Journal of the Islamic Academy of Sciences, 10 (2), 55–60.
Cao, J., Dai, ‘Q. (2009). A novel online fingerprint segmentation method based on frame-difference,’ 2009 International Conference on Image Analysis and Signal Processing, Taizhou, 57–60. doi: http://doi.org/10.1109/iasp.2009.5054651
Zhan, X., Sun, Z., Yin, Y., Chen, Y. (2005). Fingerprint image segmentation method based on MCMC & GA. In International Conference on Image Analysis and Processing. Berlin, Heidelberg: Springer, 391-398. doi: http://doi.org/10.1007/11553595_48
Tsmots, I., Skorokhoda, O., Rabyk, V. Structure Software Model of a Parallel-Vertical Multi-input Adder for FPGA Implementation. Computer Sciences and Information Technologies – Proceedings of the 11th International Scientific and Technical Conference CSIT 2016. Lviv, 158–160. doi: http://doi.org/10.1109/stc-csit.2016.7589894
Tsmots, I., Skorokhoda, O. (2010). Methods and VLSI-structures for Neural Element Implementation. Perspective Technologies and Methods in MEMS Design, MEMSTECH’2010 – Processing of the 6th International Conference. Polyana, 135.
Ding, Y., Zhuang, D., Wang, K. (2005). A study of hand vein recognition method. IEEE International Conference Mechatronics and Automation, 4, 2106–2110. doi: http://doi.org/10.1109/icma.2005.1626888
Rathgeb, C., Uhl, A. (2010). Two-factor authentication or how to potentially counterfeit experimental results in biometric systems. In International Conference Image Analysis and Recognition. Berlin, Heidelberg: Springer, 296–305. doi: http://doi.org/10.1007/978-3-642-13775-4_30
Denysyuk, P., Teslyuk, V., Chorna, I. (2018). Development of mobile robot using LIDAR technology based on Arduino controller. 2018 XIV-th International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH), 240–244. doi: http://doi.org/10.1109/memstech.2018.8365742
Kunanets, N., Vasiuta, O., Boiko, N. (2019). Advanced technologies of big data research in distributed information systems. 2019 IEEE 14th International Conference on Computer Science and Information Technologies (CSIT), 3, 71–76. doi: http://doi.org/10.1109/stc-csit.2019.8929756
Hore, A., Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. 2010 20th International Conference on Pattern Recognition. IEEE, 2366–2369. doi: http://doi.org/10.1109/icpr.2010.579
“Dronyuk, I., Nazarkevych, M., & Fedevych, O. (2015, October). Synthesis of Noise-Like Signal Based on Ateb-Functions. In International Conference on Distributed Computer and Communication Networks (pp. 132-140). Springer, Cham.
Putyatin, E. P., Panchenko, I. A. (2010). Invariance of features in problems of image processing with a pronounced texture. Radioelectronics and Informatics, 1. Avaolable at: https://cyberleninka.ru/article/n/invariantnost-priznakov-v-zadachah-obrabotki-izobrazheniy-s-yarkovyrazhennoy-teksturoy Last accessed: 31.05.2022
Boyko, N., Shakhovska, N. (2018). Prospects for using cloud data warehouses in information systems. 2018 IEEE 13th International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT), 2, 136–139. doi: http://doi.org/10.1109/stc-csit.2018.8526745
Nazarkevych, M., Voznyi, Y., Hrytsyk, V., Klyujnyk, I., Havrysh, B., Lotoshynska, N. (2021). Identification of biometric images by machine learning. 2021 IEEE 12th International Conference on Electronics and Information Technologies. ELIT 2021 – Proceedings, 95–98. doi: http://doi.org/10.1109/elit53502.2021.9501064
Nazarkevych, M., Kynash, Y., Oliarnyk, R., Klyujnyk, I., Nazarkevych, H. (2017). Application perfected wave tracing algorithm. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 1011–1014. doi: http://doi.org/10.1109/ukrcon.2017.8100403
Lyubchenko, V. A. (2002). Application of one-dimensional normalization in image recognition problems with projective distortions. Radio Electronics and Youth in the XXI Century. Kharkiv: KhNURE, 388–389.
Nazarkevych, M., Oliiarnyk, R., Nazarkevych, H., Kramarenko, O., Onyshschenko, I. (2016). The method of encryption based on Ateb-functions. 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), 129–133. doi: http://doi.org/10.1109/dsmp.2016.7583523
Medykovskyy, M., Lipinski, P., Troyan, O., Nazarkevych, M. (2015). Methods of protection document formed from latent element located by fractals. Computer Sciences and Information Technologies (CSIT). IEEE, 70–72. doi: http://doi.org/10.1109/stc-csit.2015.7325434
Süsstrunk, S., Buckley, R., Swen, S. (1999, January). Standard RGB color spaces. In Color and imaging conference (Vol. 1999, No. 1, pp. 127-134). Society for Imaging Science and Technology.
Dronyuk, I., Nazarkevych, M, Poplavska, Z. (2017). Gabor generalization filters based on ateb-functions for information security. InInternational Conference on Man – Machine Interactions 2017. Cham: Springer, 195–206. doi: http://doi.org/10.1007/978-3-319-67792-7_20
He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. doi: http://doi.org/10.1109/cvpr.2016.90
Wang, L., Yuan, W., Zeng, L., Xu, J., Mo, Y., Zhao, X., Peng, L. (2022). Dementia analysis from functional connectivity network with graph neural networks. Information Processing & Management, 59 (3), 102901. doi: http://doi.org/10.1016/j.ipm.2022.102901
Chen, Y., Sanghavi, S., Xu, H. (2012). Clustering sparse graphs. Advances in neural information processing systems, 25.
Arulselvan, A., Commander, C. W., Elefteriadou, L., Pardalos, P. M. (2009). Detecting critical nodes in sparse graphs. Computers & Operations Research, 36 (7), 2193–2200. doi: http://doi.org/10.1016/j.cor.2008.08.016
Ashraf, I., Hur, S., Park, S., Park, Y. (2020). DeepLocate: Smartphone Based Indoor Localization with a Deep Neural Network Ensemble Classifier. Sensors, 20 (1), 133. doi: http://doi.org/10.3390/s20010133
Chen, W., Sui, L., Xu, Z., Lang, Y. (2012). Improved Zhang-Suen thinning algorithm in binary line drawing applications. 2012 International Conference on Systems and Informatics (ICSAI2012). IEEE, 1947–1950. doi: http://doi.org/10.1109/icsai.2012.6223430
Saoji, S. U., Dua, N., Choudhary, A. K., Phogat, B. (2021). Air Canvas Application Using OpenCV and Numpy in Python. IRJET, 8 (8).
Nazarkevych, M., Oliarnyk, R., Troyan, O., Nazarkevych, H. (2016). Data protection based on encryption using Ateb-functions. 2016 XIth International Scientific and Technical Conference Computer Sciences and Information Technologies (CSIT). IEEE, 30–32.
Nazarkevych, M., Dmytruk, S., Hrytsyk, V., Vozna, O., Kuza, A., Shevchuk, O. et. al. (2021). Evaluation of the Effectiveness of Different Image Skeletonization Methods in Biometric Security Systems. International Journal of Sensors, Wireless Communications and Control, 11 (5), 542–552. doi: http://doi.org/10.2174/2210327910666201210151809
Artemenko, M. V., Kalugina, N. M., Shutkin, A. N. (2016). Formation of a set of informative indicators on the basis of the Kolmogorov-Gabor approximating polynomial and the maximum gradient of functional differences. Proceedings of Southwestern State University. Series: Management, computer engineering, computer science. Medical Instrumentation, 1, 116–123.
Nazarkevych, M., Buriachok, V., Lotoshynska, N., Dmytryk, S. (2018). Research of Ateb-Gabor filter in biometric protection systems. 2018 IEEE 13th International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT), 1, 310–313. doi: http://doi.org/10.1109/stc-csit.2018.8526607
Nazarkevych, M., Logoyda, M., Troyan, O., Vozniy, Y., Shpak, Z. (2019). The ateb-gabor filter for fingerprinting. Conference on Computer Science and Informatics, 247–255. doi: http://doi.org/10.1007/978-3-030-33695-0_18
Nazarkevych, M., Oliarnyk, R., Dmytruk, S. (2017). An images filtration using the Ateb-Gabor method. 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), 1, 208–211. doi: http://doi.org/10.1109/stc-csit.2017.8098770
Nazarkevych, M., Riznyk, O., Samotyy, V., Dzelendzyak, U. (2019). Detection of regularities in the parameters of the ateb-gabor method for biometric image filtration. Eastern European Journal of Advanced Technology, 1 (2 (97)), 57–65. doi: http://doi.org/10.15587/1729-4061.2019.154862
Medykovskyi, M. O., Tsmots, I. G.,Tsymbal, Y. V. (2016). Information analytical system for energy efficiency management at enterprises in the city of Lviv (Ukraine). Actual Problems in Economics, 1 (175), 379–384.
Dronjuk, I., Nazarkevych, M., Troyan, O. (2016). The modified amplitude-modulated screening technology for the high printing quality. InInternational Symposium on Computer and Information Sciences. Cham: Springer, 270–276. doi: http://doi.org/10.1007/978-3-319-47217-1_29
Nazarkevych, M., Lotoshynska, N., Brytkovskyi, V., Dmytruk, S., Dordiak, V., Pikh, I. (2019). Biometric Identification System with Ateb-Gabor Filtering. 2019 XIth International Scientific and Practical Conference on Electronics and Information Technologies (ELIT), 15–18. doi: http://doi.org/10.1109/elit.2019.8892282
Nazarkevych, M., Lotoshynska, N., Hrytsyk, V., Havrysh, B., Vozna, O., Palamarchuk, O. (2021). Design of biometric system and modeling of machine learning for entering the information system. International Scientific and Technical Conference on Computer Sciences and Information Technologies, 2, 225–230. doi: http://doi.org/10.1109/csit52700.2021.9648770
