SYNERGY OF BUILDING CYBERSECURITY SYSTEMS
Ключові слова:
кібербезпека, кібербезпека, моделювання конфліктно-кооперативної взаємодії, моделювання конфліктно-кооперативної взаємодії, конструкції криптокоду, конструкції криптокоду, алгебраїчні геометричні коди, алгебраїчні геометричні коди, класифікатори кіберзагроз, класифікатори кіберзагрозКороткий опис
Розвиток сучасної світової спільноти тісно пов’язаний з досягненнями в області обчислювальних ресурсів і кіберпростору. Формування та розширення асортименту послуг базується на досягненнях людства у галузі високих технологій. Однак стрімке зростання обчислювальних ресурсів, поява повномасштабного квантового комп’ютера посилює вимоги до систем безпеки не тільки інформаційно-комунікаційних, але і до кіберфізичних систем і технологій.
У першому розділі обговорюються методологічні основи побудови систем безпеки для об'єктів критичної інфраструктури на основі моделювання процесів поведінки антагоністичних агентів у систем безпеки.
У другому розділі пропонується концепція інформаційної безпеки в соціальних мережах, яка заснована на математичних моделях захисту даних, з урахуванням впливу конкретних параметрів соціальної мережі та наслідків для неї.
Враховуються нелінійні взаємозв'язки параметрів системи захисту, атак, соціальних мереж, а також вплив індивідуальних характеристик користувачів і характеру взаємовідносин між ними.
У третьому розділі розглядаються практичні аспекти методології побудови постквантових алгоритмів для асиметричних криптосистем Мак-Еліса та Нідеррейтера на алгебраїчних кодах (еліптичних та модифікованих еліптичних кодах), їх математичні моделі та практичні алгоритми. Запропоновано гібридні конструкції криптокоду Мак-Еліса та Нідеррейтера на дефектних кодах. Вони дозволяють істотно знизити енергетичні витрати на реалізацію, забезпечуючи при цьому необхідний рівень криптографічної стійкості системи в цілому. Запропоновано концепцію безпеки корпоративних інформаційних та освітніх систем, які засновані на побудові адаптивної системи захисту інформації.
ISBN 978-617-7319-31-2 (on-line)
ISBN 978-617-7319-32-9 (print)
------------------------------------------------------------------------------------------------------------------
Як цитувати: Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O., Korol, O., Milevskyi, S. et. al.; Yevseiev, S., Ponomarenko, V., Laptiev, O., Milov, O. (Eds.) (2021). Synergy of building cybersecurity systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 188. doi: http://doi.org/10.15587/978-617-7319-31-2
------------------------------------------------------------------------------------------------------------------
Індексація:
Розділи
Посилання
Riley, M., Elgin, B., Lawrence, D., Matlack, C. (2014). Missed alarms and 40 million stolen credit card numbers: How target blew it. Available at: http://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data Last accessed: 30.03.2016
M-trends 2016 (2016). Mandaint: A FireEye Company. Technical report. Available at: https://www.fireeye.com/content/dam/fireeye-www/current-threats/pdfs/rpt-mtrends-2016.pdf
Jajodia, S., Noel, S. (2010) Advanced cyber attack modeling analysis and visualization. Technical report, DTIC Document. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a516716.pdf
Qin, X., Lee, W. (2004). Attack plan recognition and prediction using causal networks. Proceedings of 20th Annual Computer Security Applications Conference. Tucson, 370–379. doi: http://doi.org/10.1109/csac.2004.7
Xie, P., Li, J. H., Ou, X., Liu, P., Levy, R. (2010). Using bayesian networks for cyber security analysis. Proceedings of 2010 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). Chicago, 211–220. doi: http://doi.org/10.1109/dsn.2010.5544924
Fava, D. S., Byers, S. R., Yang, S. J. (2008). Projecting Cyberattacks Through Variable-Length Markov Models. IEEE Transactions on Information Forensics and Security, 3 (3), 359–369. doi: http://doi.org/10.1109/tifs.2008.924605
Stotz, A., Sudit, M. (2007). Information fusion engine for real-time decisionmaking: A perceptual system for cyber attack tracking. Proceedings of 2007 10th International Conference on Information Fusion. Quebec, 1–8. doi: http://doi.org/10.1109/icif.2007.4408113
Wang, B., Cai, J., Zhang, S., Li, J. (2010). A network security assessment model based on attack-defense game theory. Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM). Taiyuan, 3, V3–639. doi: http://doi.org/10.1109/iccasm.2010.5620536
Grunewald, D., Liitzenberger, M., Chinnow, J., Bye, R., Bsufka, K., Albayrak, S. (2011). Agent-based network security simulation. Proceedings of The 10th International Conference on Autonmous Agents and Multiagent Systems, 3, 1325–1326.
Moskal, S., Wheeler, B., Kreider, D., Kuhl, M. E., Yang, S. J. (2014). Context model fusion for multistage network attack simulation. Proceedings of Military Communications Conference (MILCOM). Baltimore, 158–163. doi: http://doi.org/10.1109/milcom.2014.32
Moskal, S., Kreider, D., Hays, L., Wheeler, B., Yang, S. J., Kuhl, M. (2013) Simulating attack behaviors in enterprise networks. Proceedings of 2013 IEEE Conference on Communications and Network Security (CNS). National Harbor, 359–360. doi: http://doi.org/10.1109/cns.2013.6682726
Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J. M. (2002) Automated generation and analysis of attack graphs. Proceedings of 2002 IEEE Symposium on Security and Privacy. Berkeley, 273–284. doi: http://doi.org/10.1109/secpri.2002.1004377
Jha, S., Sheyner, O., Wing, J. (2002). Two formal analyses of attack graphs. Proceedings of 2002 15th IEEE Computer Security Foundations Workshop. Cape Breton, 49–63. doi: http://doi.org/10.1109/csfw.2002.1021806
Moskal, S. F. (2016). Knowledge-based Decision Making for Simulating Cyber Attack Behaviors. Rochester Institute of Technology.
Kotenko, I., Doynikova, E. (2015). The CAPEC based generator of attack scenarios for network security evaluation. Proceedings of 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). Warsaw, 1, 436–441. doi: http://doi.org/10.1109/idaacs.2015.7340774
Yevseiev, S., Milov, O., Milevskyi, S., Voitko, O., Kasianenko, M., Melenti, Y. et. al. (2020). Development and analysis of game-theoretical models of security systems agents interaction. Eastern-European Journal of Enterprise Technologies, 2 (4 (104)), 15–29. doi: http://doi.org/10.15587/1729-4061.2020.201418
Milov, O., Kostyak, M., Milevsky, S., Pogasiy, S. (2019). Methods for modeling agent behavior in information and communication systems. Control, Navigation and Communication Systems. Academic Journal, 6 (58), 63–70. doi: http://doi.org/10.26906/sunz.2019.6.063
Yevseiev, S., Karpinski, M., Shmatko, O., Romashchenko, N., Gancarczyk, T., Falat, P. (2019). Methodology of the cyber security threats risk assessment based on the fuzzy-multiple approach. 19th International Multidisciplinary Scientific GeoConference SGEM2019, Informatics, Geoinformatics and Remote Sensing. Sofia, 437–444. doi: http://doi.org/10.5593/sgem2019/2.1/s07.057
S. Yevseiev, S., Aleksiyev, V., Balakireva, S., Peleshok, Y., Milov, O., Petrov, O. et. al. (2019). Development of a methodology for building an information security system in the corporate research and education system in the context of university autonomy. Eastern-European Journal of Enterprise Technologies, 3 (9 (99)), 49–63. doi: http://doi.org/10.15587/1729-4061.2019.169527
Yevseiev, S., Ponomarenko, V., Ponomarenko, V., Rayevnyeva, O., Rayevnyeva, O. (2017). Assessment of functional efficiency of a corporate scientificeducational network based on the comprehensive indicators of quality of service. Eastern-European Journal of Enterprise Technologies, 6 (2 (90)), 4–15. doi: http://doi.org/10.15587/1729-4061.2017.118329
Sun, R. (2007). The importance of cognitive architectures: an analysis based on CLARION. Journal of Experimental & Theoretical Artificial Intelligence 19 (2), 159–193. doi: http://doi.org/10.1080/09528130701191560
Gilbert, N. (2004). Agent-based social simulation: dealing with complexity. Tech. rep. University of Surrey.
Carley, K. M., Prietula, M. J., Lin, Z. (1998). Design versus cognition: The interaction of agent cognition and organizational design on organizational performance. Journal of Artificial Societies and Social Simulation 1 (3). Available at: http://jasss.soc.surrey.ac.uk/1/3/4.html
Helbing, D., Balletti, S. (2011). How to do agent-based simulations in the future: From modeling social mechanisms to emergent phenomena and interactive systems design. Working Paper 11-06-024. Santa Fe Institute. Available at: https://www.santafe.edu/research/results/working-papers/how-to-do-agent-based-simulations-in-the-future-fr
Axelrod, R., Tesfatsion, L.; Tesfatsion, L., Judd, K. L. (Eds.) (2006). A guide for newcomers to agent-based modeling in the social sciences. Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics. Chap. Appendix A. Elsevier, 164–1659. doi: http://doi.org/10.1016/s1574-0021(05)02044-7
Nilsson, N. J. (1977). A production system for automatic deduction. Technical Note 148. Stanford. Available at: http://www.ai.sri.com/pubs/files/743.pdf
Chao, Y. R. (1968). Language and symbolic systems. Cambridge University Press, 260. Available at: http://services.cambridge.org/us/academic/subjects/languages-linguistics/english-language-and-linguistics-general-interest/language-and-symbolic-systems?format=PB&isbn=9780521094573
Ishida, T. (1994). Parallel, Distributed and Multiagent Production Systems, vol. 878 of Lecture Note in Computer Science. Springer. doi: http://doi.org/10.1007/3-540-58698-9
Bordini, R. H., Hübner, J. F., Wooldridge, M. (2007). Programming Multi-Agent Systems in AgentSpeak using Jason. Wiley Series in Agent Technology. John Wiley & Sons, 292.
Dignum, F., Kinny, D., Sonenberg, L. (2002). From desires, obligations and norms to goals. Cognitive Science Quarterly, 2 (3-4), 407–430. Available at: http://dspace.library.uu.nl/handle/1874/19827
Cohen, P. R., Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42 (2-3), 213–261. doi: http://doi.org/10.1016/0004-3702(90)90055-5
Adam, C., Gaudou, B. (2016). BDI agents in social simulations: a survey. The Knowledge Engineering Review, 31 (3), 207–238. doi: http://doi.org/10.1017/s0269888916000096
Pereira, D., Oliveira, E., Moreira, N., Sarmento, L. (2005). Towards an architecture for emotional bdi agents. EPIA'05: Proceedings of 12th Portuguese Conference on Artificial Intelligence. Springer. doi: http://doi.org/10.1109/epia.2005.341262
Jiang, H., Vidal, J. M. (2006). From rational to emotional agents. In: Proceedings of the AAAI Workshop on Cognitive Modeling and Agent-based Social Simulation. AAAI Press.
Kennedy, W. G.; Heppenstall, A. J., Crooks, A. T., See, L. M., Batty, M., (Eds.) (2012). Modelling human behaviour in agent-based models. Agent-Based Models of Geographical Systems. Springer, 167–179. doi: http://doi.org/10.1007/978-90-481-8927-4_9
Kollingbaum, M. J. (2005). Norm-Governed Practical Reasoning Agents. University of Aberdeen. Available at: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415494
Dignum, F. (1999). Autonomous agents with norms. Artificial Intelligence and Law, 7 (1), 69–79. doi: http://doi.org/10.1023/a:1008315530323
Castelfranchi, C., Dignum, F., Jonker, C. M., Treur, J. (2000). Deliberate normative agents: Principles and architecture. Intelligent Agents VI, Agent Theories, Architectures, and Languages. Proceedings 6th International Workshop, ATAL'99. Orlando, 364–378. doi: http://doi.org/10.1007/10719619_27
Conte, R., Castelfranchi, C. (1995). Cognitive and Social Action. Taylor & Francis, 224. doi: http://doi.org/10.4324/9780203783221
Sun, R.; Lukose, D., Shi, Z. (Eds.) (2009). Cognitive architectures and multi-agent social simulation. Multi-Agent Systems for Society. Springer-Verlag, 7–21. doi: http://doi.org/10.1007/978-3-642-03339-1_2
Card, S. K., Newell, A., Moran, T. P. (1983). The Psychology of Human-Computer Interaction. Hillsdale: L. Erlbaum Associates Inc., 448. doi: http://doi.org/10.1201/9780203736166
Byrne, M. D.; Sears, A., Jacko, J. A. (Eds.) (2007). Cognitive architecture. The Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging Applications. CRC Press, 93–114. doi: http://doi.org/10.1201/9781410615862.ch5
Sun, R., Peterson, T., Sessions, C. (2002). Beyond simple rule extraction: acquiring planning knowledge from neural networks. Proceedings of WIRN'01. Springer, 288–300. doi: http://doi.org/10.1007/978-1-4471-0219-9_32
Laird, J. E. (2012). The SOAR Cognitive Architecture. Cambridge: MIT Press. doi: http://doi.org/10.7551/mitpress/7688.001.0001
Attiah, A., Chatterjee, M., Zou, C. C. (2018). A Game Theoretic Approach to Model Cyber Attack and Defense Strategies. 2018 IEEE International Conference on Communications (ICC). doi: http://doi.org/10.1109/icc.2018.8422719
Alpcan, T., Baser, T. (2006). An intrusion detection game with limited observations. Proc. 12th Int. Symp. on Dynamic Games and Applications. Available at: https://wenku.baidu.com/view/07f2933031126edb6f1a10f9.html
Security measurement – white paper (2006). Available at: http://www.psmsc.com/Downloads/TechnologyPapers/SecurityWhitePaper_v3.0.pdf
He, W., Xia, C., Wang, H., Zheng, C., Ji, Y. (2008). A game theoretical attack-defense model oriented to network security risk assessment. International Conference on Computer Science and Software Engineering. Wuhan, 498–504. doi: http://doi.org/10.1109/csse.2008.1651
Yazar, Z. (2002). A qualitative risk analysis and management tool. CRAMM. SANS Institute. Available at: https://www.sans.org/reading-room/whitepapers/auditing/paper/83
Aigbokhaevbolo, O. (2011). Application of Game Theory to Business Strategy in Undeveloped Countries: A Case for Nigeria. Journal of Social Sciences, 27 (1), 1–5. doi: http://doi.org/10.1080/09718923.2011.11892900
Manshaei, M. H., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.-P. (2013). Game theory meets network security and privacy. ACM Computing Surveys, 45 (3), 1–39. doi: http://doi.org/10.1145/2480741.2480742
Akinwumi, D. A., Iwasokun, G. B., Alese, B. K., Oluwadare, S. A. (2018). A review of game theory approach to cyber security risk management. Nigerian Journal of Technology, 36 (4), 1271–1285. doi: http://doi.org/10.4314/njt.v36i4.38
Kesselman, A., Leonardi, S. (2012). Game-theoretic analysis of Internet switching with selfish users. Theoretical Computer Science, 452, 107–116. doi: http://doi.org/10.1016/j.tcs.2012.05.029
Akella, A., Karp, R., Papadimitriou, C., Seshan, S., Shenker, S. (2002). Selfish behavior and the stability of the internet: A game theoretic analysis of TCP. Proceedings of SIGCOMM 2002. doi: http://doi.org/10.1145/633025.633037
Alpcan, T., Basar, T., Dey, S. (2004). A power control game based on outage probabilities for multicell wireless data networks. Proceedings of the 2004 American Control Conference. doi: http://doi.org/10.23919/acc.2004.1386817
Bencsth, B., Buttyn, L., Vajda, I. (2003). A game-based analysis of the client puzzle approach to defend against dos attacks. Soft- COM 2003 11th International conference on software, telecommunications and computer networks, 763–767.
Michiardi, P., Molva, R. (2002). Core: A collaborative reputation mechanism to enforce node co-operation in mobile ad hoc networks. 6th IEIP Communications and Multimedia Security Conference. doi: http://doi.org/10.1007/978-0-387-35612-9_9
Kodialam, M., Lakshman, T. V. (2003). Detecting network intrusions via sampling: A game theoretic approach. IEEE IN- EOCOMM 2003. San Francisco. doi: http://doi.org/10.1109/infcom.2003.1209210
Patchat, A., Park, J.-M. (2004). A Game Theoretic Approach to Modeling Intrusion Detection in Mobile Ad Hoc Networks. Proceedings of the 2004 IEEE Workshop on Information Assurance and Security. United States Military Academy. West Point. doi: http://doi.org/10.1109/iaw.2004.1437828
Alazzawe, A., Nawaz, A., Bayaraktar, M. M. (2006). Game theory and intrusion detection systems.
Hamilton, S. N., Miller, W. L., Ott, A., Saydjari, O. S. (2002). Challenges in applying game theory to the domain of information warfare. Proceedings of the 4th Information survivability workshop (ISW-2001/2002).
Hamilton, S. N., Miller, W. L., Ott, A., Saydjari, O. S. (2002). The role of game theory in information warfare. Proceedings of the 4th information survivability workshop (ISW- 2001/2002).
Liu, P., Zang, W., Yu, M. (2005). Incentive-based modeling and inference of attacker intent, objectives, and strategies. ACM Transactions on Information and System Security, 8 (1), 78–118. doi: http://doi.org/10.1145/1053283.1053288
Nguyen, K. C., Alpcan, T., Basar, T. (2009). Stochastic games for security in networks with interdependent nodes. 2009 International Conference on Game Theory for Networks. Istanbul. doi: http://doi.org/10.1109/gamenets.2009.5137463
Nguyen, K. C., Alpcan, T., Basar, T. (2009). Security Games with Incomplete Information. 2009 IEEE International Conference on Communications. Dresden. doi: http://doi.org/10.1109/icc.2009.5199443
Chen, Z. (2007). Modeling and defending against internet worm attacks. Georgia Institute of Technology.
Hryshchuk, R. V. (2013). Dyferentsialno-ihrovi modeli ta metody modeliuvannia protsesiv kibernapadu. Kyiv, 411.
Bursztein, E., Goubault-Larrecq, J. (2007). A Logical Framework for Evaluating Network Resilience Against Faults and Attacks. Advances in Computer Science – ASIAN 2007. Computer and Network Security, 4846, 212–227. doi: http://doi.org/10.1007/978-3-540-76929-3_20
Sun, W., Kong, X., He, D., You, X. (2008). Information Security Problem Research Based on Game Theory. 2008 International Symposium on Electronic Commerce and Security. Guangzhou. doi: http://doi.org/10.1109/isecs.2008.147
Hansman, S., Hunt, R. (2005). A taxonomy of network and computer attacks. Computers & Security, 24 (1), 31–43. doi: http://doi.org/10.1016/j.cose.2004.06.011
Ma, C. Y. T., Yau, D. K. Y., Lou, X., Rao, N. S. V. (2013). Markov Game Analysis for Attack-Defense of Power Networks Under Possible Misinformation. IEEE Transactions on Power Systems, 28 (2), 1676–1686. doi: http://doi.org/10.1109/tpwrs.2012.2226480
Milov, O., Yevseiev, S., Ivanchenko, Y., Milevskyi, S., Nesterov, O., Puchkov, O. et. al. (2019). Development of the model of the antagonistic agents behavior under a cyber conflict. Eastern-European Journal of Enterprise Technologies, 4 (9 (100)), 6–19. doi: http://doi.org/10.15587/1729-4061.2019.175978
Gordon, L. A., Loeb, M. P., Lucyshyn, W., Zhou, L. (2015). The impact of information sharing on cybersecurity underinvestment: A real options perspective. Journal of Accounting and Public Policy, 34 (5), 509–519. doi: http://doi.org/10.1016/j.jaccpubpol.2015.05.001
Huang, C. D., Behara, R. S. (2013). Economics of information security investment in the case of concurrent heterogeneous attacks with budget constraints. International Journal of Production Economics, 141 (1), 255–268. doi: http://doi.org/10.1016/j.ijpe.2012.06.022
Alguliyev, R., Imamverdiyev, Y., Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212–223. doi: http://doi.org/10.1016/j.compind.2018.04.017
Cárdenas, A. A., Amin, S., Lin, Z.-S., Huang, Y.-L., Huang, C.-Y., Sastry, S. (2011). Attacks against process control systems. Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security - ASIACCS ’11, 355–366. doi: http://doi.org/10.1145/1966913.1966959
Gollmann, D. (2013). Security for Cyber-Physical Systems. Mathematical and Engineering Methods in Computer Science, 12–14. doi: http://doi.org/10.1007/978-3-642-36046-6_2
Cardenas, A., Amin, S., Sinopoli, B., Giani, A., Perrig, A., Sastry, S. (2009). Challenges for securing cyber physical systems. Workshop on future directions in cyber-physical systems security.
Pfleeger, C. P., Pfleeger, S. L. (2006). Security in Computing. Prentice Hall, 880.
Cebula, J. J., Young, L. R. (2010). A taxonomy of operational cyber security risks. Technical report, DTIC Document.
Kang, D.-J., Lee, J.-J., Kim, S.-J. Park, J.-H. (2009). Analysis on cyber threats to SCADA systems. 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific. Seoul. doi: http://doi.org/10.1109/td-asia.2009.5357008
Nicholson, A., Webber, S., Dyer, S., Patel, T., Janicke, H. (2012). SCADA security in the light of Cyber-Warfare. Computers & Security, 31 (4), 418–436. doi: http://doi.org/10.1016/j.cose.2012.02.009
Guide for conducting risk assessments (2012). NIST. doi: http://doi.org/10.6028/nist.sp.800-30r1
Cyber threat source descriptions. US-CERT. Available at: https://ics-cert.us-cert.gov/content/cyber-threat-source-descriptions
Milov, O., Korol, O., Khvostenko, V. (2019). Development of the classification of the cyber security agents bounded rationality. Control, Navigation and Communication Systems. Academic Journal, 4 (56), 82–90. doi: http://doi.org/10.26906/sunz.2019.4.082
Yevseiev, S. (2017). Intruder model of access rights in the automated banking system based on a synergistic approach. Naukovo-tekhnichnyi zhurnal “Informatsiyna bezpeka”, 2 (26), 110–120.
Kravets, D. (2009). Feds: Hacker disabled offshore oil platforms’ leak-detection system. Available at: https://www.wired.com/2009/03/feds-hacker-dis/
Chattopadhyay, A., Prakash, A., Shafique, M. (2017). Secure Cyber-Physical Systems: Current trends, tools and open research problems. Design, Automation & Test in Europe Conference & Exhibition (DATE). Lausanne. doi: http://doi.org/10.23919/date.2017.7927154
Dell Security (2016). Annual Threat Report. Available at: https://www.netthreat.co.uk/assets/assets/dell-security-annual-threat-report-2016-white-paper-197571.pdf
Walker, J. J. (2012). Cyber Security Concerns for Emergency Management. Emergency Management. doi: http://doi.org/10.5772/34104
Ali, N. S. (2016). A four-phase methodology for protecting web applications using an effective real-time technique. International Journal of Internet Technology and Secured Transactions, 6 (4), 303. doi: http://doi.org/10.1504/ijitst.2016.10003854
Park, K.-J., Zheng, R., Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36 (1), 1–7. doi: http://doi.org/10.1016/j.comcom.2012.09.006
State of the Phish: An in-depth look at user awareness (2020). Available at: https://cdw-prod.adobecqms.net/content/dam/cdw/on-domain-cdw/brands/proofpoint/gtd-pfpt-us-tr-state-of-the-phish-2020.pdf
Goel, S., Chen, V. (2005). Information security risk analysis – a matrix-based approach. Proceedings of the Information Resource Management Association (IRMA) International Conference. San Diego.
Kjaerland, M. (2006). A taxonomy and comparison of computer security incidents from the commercial and government sectors. Computers & Security, 25 (7), 522–538. doi: http://doi.org/10.1016/j.cose.2006.08.004
Blackwell, C. (2010). A security ontology for incident analysis. Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research - CSIIRW ’10. doi: http://doi.org/10.1145/1852666.1852717
Hryshchuk, R., Yevseiev, S. (2017). Methodology of building a system for providing information security of bank information in automated banking systems. Ukrainian Scientific Journal of Information Security, 23 (3), 204–214. doi: http://doi.org/10.18372/2225-5036.23.12095
Pollock, G. M., Atkins, W. D., Schwartz, M. D., Chavez, A. R., Urrea, J. M., Pattengale, N. et. al. (2010). Modeling and simulation for cyber-physical system security research, development and applications. doi: http://doi.org/10.2172/1028942
Ahmad, R., Yunos, Z. (2012). A dynamic cyber terrorism framework. International Journal of Computer Science and Information Security, 10 (2), 149–158.
Loukas, G., Gan, D., Vuong, T. (2013). A taxonomy of cyber attack and defence mechanisms for emergency management networks. 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). San Diego. doi: http://doi.org/10.1109/percomw.2013.6529554
Framework for Improving Critical Infrastructure Cybersecurity. Version 1.0 (2014). National Institute of Standards and Technology. Available at: https://www.nist.gov/publications/framework-improving-critical-infrastructure-cybersecurity-version-10
Hughes, J., Cybenko, G. (2014). Three tenets for secure cyber-physical system design and assessment. Cyber Sensing 2014. doi: http://doi.org/10.1117/12.2053933
Buchyk, S. (2016). The methodology of analysis of risks of tree that identifiers the state informative resources. Ukrainian Information Security Research Journal, 18 (1), 81–89. doi: http://doi.org/10.18372/2410-7840.18.10116
Yevseiev, S., Rzayev, K., Mammadova, T., Samedov, F., Romashchenko, N. (2018). Classification of cyber cruise of informational resources of automated banking systems. Cybersecurity: Education, Science, Technique, 2, 47–67. doi: http://doi.org/10.28925/2663-4023.2018.2.4767
Barabash, O., Laptiev, O., Tkachev, V., Maystrov, O., Krasikov, O., Polovinkin, I. (2020). The Indirect method of obtaining Estimates of the Parameters of Radio Signals of covert means of obtaining Information. International Journal of Emerging Trends in Engineering Research, 8 (8), 4133–4139. doi: http://doi.org/10.30534/ijeter/2020/17882020
Benson, V., Saridakis, G., Tennakoon, H., Ezingeard, J. N. (2015). The role of security notices and online consumer behaviour: An empirical study of social networking users. International Journal of Human-Computer Studies, 80, 36–44. doi: http://doi.org/10.1016/j.ijhcs.2015.03.004
Mvungi, B., Iwaihara, M. (2015). Associations between privacy, risk awareness, and interactive motivations of social networking service users, and motivation prediction from observable features. Computers in Human Behavior, 44, 20–34. doi: http://doi.org/10.1016/j.chb.2014.11.023
Barabash, O., Laptiev, O., Kovtun, O., Leshchenko, O., Dukhnovska, K., Biehun, A. (2020). The Method dynavic TF-IDF. International Journal of Emerging Trends in Engineering Research, 8 (9), 5713–5718. doi: http://doi.org/10.30534/ijeter/2020/130892020
Yevseiev, S., Laptiev, O., Lazarenko, S., Korchenko, A., Manzhul, I. (2021). Modeling the protection of personal data from trust and the amount of information on social networks. EUREKA: Physics and Engineering, 1, 24–31. doi: http://doi.org/10.21303/2461-4262.2021.001615
Laptiev, O., Savchenko, V., Kotenko, A., Akhramovych, V., Samosyuk, V. Shuklin, G., Biehun, A. (2021) Method of Determining Trust and Protection of Personal Data in Social Networks. International Journal of Communication Networks and Information Security, 13 (1), 1–14.
Obidin, D., Ardelyan, V., Lukova-Chuiko, N., Musienko, A. (2017). Estimation of Functional Stability of Special Purpose Networks Located on Vehicles. Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). Kyiv: National Aviation University, 167–170. doi: http://doi.org/10.1109/apuavd.2017.8308801
Korotin, S., Kravchenko, Y., Starkova, O., Herasymenko, K., Mykolaichuk, R. (2019). Analytical determination of the parameters of the self-tuning circuit of the traffic control system on the limit of vibrational stability. International Scientific-Practical Conference Problems of Infocommunications Science and Technology. PIC S&T`2019 – Proceedings. Kyiv, 471–476. doi: http://doi.org/10.1109/picst47496.2019.9061256
Rakushev, M., Permiakov, O., Tarasenko, S., Kovbasiuk, S., Kravchenko, Y., Lavrinchuk, O. (2019). Numerical Method of Integration on the Basis of Multidimensional Differential-Taylor Transformations. Proceedings of the IEEE International Scientific-Practical Conference Problems of Infocommunications Science and Technology, PIC S&T`2019 – Proceedings. Kyiv, 675–678. doi: http://doi.org/10.1109/picst47496.2019.9061339
Kravchenko, Y., Leshchenko, O., Dakhno, N., Trush, O., Makhovych, O. (2019). Evaluating the effectiveness of cloud services. IEEE International Conference on Advanced Trends in Information Theory. ATIT`2019 – Proceedings. Kyiv, 120–124. doi: http://doi.org/10.1109/atit49449.2019.9030430
Sobchuk, V., Pichkur, V., Barabash, O., Laptiev, O., Kovalchuk, I., Zidan, A. (2020). Algorithm of control of functionally stable manufacturing processes of enterprises. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 206–211.
Savchenko, V., Laptiev, O., Kolos, O., Lisnevskyi, R., Ivannikova, V., Ablazov, I. (2020) Hidden Transmitter Localization Accuracy Model Based on Multi-Position Range Measurement. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 246–251.
Chen, P. A., Desmet, L., Huygens, C. (2019) Study on Advanced Persistent Threats. Communications and Multimedia Security. Berlin Heidelberg: Springer, 63–72. doi: http://doi.org/10.1007/978-3-662-44885-4_5
Freeman, L. C., Borgatti, S. P., White, D. R. (1991). Centrality in valued graphs: A measure of betweenness based on network flow. Social Networks, 13 (2), 141–154. doi: http://doi.org/10.1016/0378-8733(91)90017-n
Yevseiev, S., Korolyov, R., Tkachov, A., Laptiev, O., Opirskyy, I., Soloviova, O. (2020). Modification of the algorithm (OFM) S-box, which provides increasing crypto resistance in the post-quantum period. International Journal of Advanced Trends in Computer Science and Engineering, 9 (5), 8725–8729. doi: http://doi.org/10.30534/ijatcse/2020/261952020
Laptiev, O., Stefurak, O., Polovinkin, I., Barabash, O., Savchenko, V., Zelikovska, O. (2020). The method of improving the signal detection quality by accounting for interference. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (IEEE ATIT 2020) Conference Proceedings. Kyiv, 172–176.
Korchenko, A., Breslavskyi, V., Yevseiev, S., Zhumangalieva, N., Zvarych, A., Kazmirchuk, S. et. al. (2021). Development of a method for constructing linguistic standards for multi-criteria assessment of honeypot efficiency. Eastern-European Journal of Enterprise Technologies, 1 (2 (109)), 14–23. doi: http://doi.org/10.15587/1729-4061.2021.225346
Bartock, M., Cichonski, J., Souppaya, M., Smith, M., Witte, G., Scarfone, K. (2016). Guide for cybersecurity event recovery. NIST. doi: http://doi.org/10.6028/nist.sp.800-184
Security requirements for cryptographic modules (2001). Available at: https://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf Last accessed: 01.02.2020
Cichonski, J., Franklin, J. M., Bartock, M. (2017). Guide to LTE security. doi: http://doi.org/10.6028/nist.sp.800-187
Hryshchuk, R., Yevseiev, S., Shmatko, A. (2018). Construction methodology of information security system of banking information in automated banking systems. Vienna: Premier Publishing, 284. doi: http://doi.org/10.29013/r.hryshchuk_s.yevseiev_a.shmatko.cmissbiabs.284.2018
Lohachab, A., Lohachab, A., Jangra, A. (2020). A comprehensive survey of prominent cryptographic aspects for securing communication in post-quantum IoT networks. Internet of Things, 9, 100174. doi: http://doi.org/10.1016/j.iot.2020.100174
Petrenko, K., Mashatan, A., Shirazi, F. (2019). Assessing the quantum-resistant cryptographic agility of routing and switching IT network infrastructure in a large-size financial organization. Journal of Information Security and Applications, 46, 151–163. doi: http://doi.org/10.1016/j.jisa.2019.03.007
Aggarwal, S., Chaudhary, R., Aujla, G. S., Kumar, N., Choo, K.-K. R., Zomaya, A. Y. (2019). Blockchain for smart communities: Applications, challenges and opportunities. Journal of Network and Computer Applications, 144, 13–48. doi: http://doi.org/10.1016/j.jnca.2019.06.018
Bobok, I., Kobozeva, A., Maksymov, M., Maksymova, O. (2016). Checking the Integrity of CCTV Footage in Real Time at Nuclear Facilities. Nuclear and Radiation Safety, 2 (70), 68–72. doi: http://doi.org/10.32918/nrs.2016.2(70).14
Kobozeva, A. A., Bobok, I. I., Garbuz, A. I. (2016). General Principles of Integrity Checking of Digital Images and Application for Steganalysis. Transport and Telecommunication Journal, 17 (2), 128–137. doi: http://doi.org/10.1515/ttj-2016-0012
Bobok, I. I. (2018). Steganalysis method for detection of the hidden communication channel with low capacity. Telecommunications and Radio Engineering, 77 (18), 1597–1604. doi: http://doi.org/10.1615/telecomradeng.v77.i18.20
Kobozeva, A. A., Bobok, I. I., Batiene, L. E. (2018). Steganoanalytical Method Based on the Analysis of Singular Values of Digital Image Matrix Blocks. Problemele Energeticii Regionale, 3 (38), 156–168. doi: http://doi.org/10.5281/zenodo.2222384
Kobozeva, A. A., Bobok, I. I., Grygorenko, S. M. (2020). Method for Detecting of Clone Areas in a Digital Image under Conditions of Additional Attacks. Journal of Signal Processing Systems, 92 (1), 55–69. doi: http://doi.org/10.1007/s11265-019-01449-6
Evseev, S., Abdullayev, V. (2015). Monitoring algorithm of two-factor authentication method based on рasswindow system. Eastern-European Journal of Enterprise Technologies, 2 (2 (74)), 9–16. doi: http://doi.org/10.15587/1729-4061.2015.38779
Yevseiev, S., Hryhorii, K., Liekariev, Y. (2016). Developing of multi-factor authentication method based on niederreiter-mceliece modified crypto-code system. Eastern-European Journal of Enterprise Technologies, 6 (4 (84)), 11–23. doi: http://doi.org/10.15587/1729-4061.2016.86175
Yevseiev, S., Kots, H., Minukhin, S., Korol, O., Kholodkova, A. (2017). The development of the method of multifactor authentication based on hybrid cryptocode constructions on defective codes. Eastern-European Journal of Enterprise Technologies, 5 (9 (89)), 19–35. doi: http://doi.org/10.15587/1729-4061.2017.109879
Yevseiev, S., Tsyhanenko, O., Ivanchenko, S., Aleksiyev, V., Verheles, D., Volkov, S. et. al. (2018). Practical implementation of the Niederreiter modified cryptocode system on truncated elliptic codes. Eastern-European Journal of Enterprise Technologies, 6 (4 (96)), 24–31. doi: http://doi.org/10.15587/1729-4061.2018.150903
Milov, O., Yevseiev, S., Ivanchenko, Y., Milevskyi, S., Nesterov, O., Puchkov, O. et. al. (2019). Development of the model of the antagonistic agents behavior under a cyber conflict. Eastern-European Journal of Enterprise Technologies, 4 (9 (100)), 6–19. doi: http://doi.org/10.15587/1729-4061.2019.175978
Sidelnikov, V. M. (2002). Kriptografiia i teoriia kodirovaniia. Moskovskii universitet i razvitie kriptografii v Rossii. Moscow, 1–22.
Sidelnikov, V. M., Shestakov, S. O. (1992). O sisteme shifrovaniia, postroennoi na osnove obobshhennyh kodov Rida-Solomona. Diskretnaia matematika, 4 (3), 57–63.
Anohin, M. I., Varnovskii, N. P., Sidelnikov, V. M., Jashhenko, V. V. (1997). Kriptografiia v bankovskom dele. Moscow: MIFI.
Yevseiev, S., Tsyhanenko, O., Gavrilova, A., Guzhva, V., Milov, O., Moskalenko, V. et. al. (2019). Development of Niederreiter hybrid crypto-code structure on flawed codes. Eastern-European Journal of Enterprise Technologies, 1 (9 (97)), 27–38. doi: http://doi.org/10.15587/1729-4061.2019.156620
Tsyhanenko, O., Yevseiev, S., Milevskyi, S. (2019). Using the Flawed Codes In Niederreiter Crypto-Code Structure. Short Paper Proceedings of the 1st International Conference on Intellectual Systems and Information Technologies (ISIT 2019). Odessa, 17–19.
McEliece, R. J. (1978). A Public-Key Criptosystem Based on Algebraic Theory. DGN Progres Report 42-44, Jet Propulsi on Lab. Pasadena, 114–116.
Niederreiter, H. (1986). Knapsack-Type Cryptosystems and Algebraic Coding Theory. Problems of Control and Information Theory, 15, 19–34.
Mak-Viliams, F., Sloen, N. (1979). Teoriia kodov, ispravliaiuschikh oshibki. Moscow: Sviaz, 744.
Muterr, V. M. (1990). Osnovy pomekhoustoichivoi teleperedachi informatsii. Leningrad: Energoatomizdat. Leningr. otd-nie, 288.
Mishhenko, V. A., Vilanskii, Yu. V. (2007). Ushherbnye teksty i mnogokanalnaia kriptografiia. Minsk: Enciklopediks.
Mischenko, V. A., Vilanskii, Iu. V., Lepin, V. V.; Mischenko, V. A. (Ed.) (2007). Kriptograficheskii algoritm MV2. Minsk: Entsiklopediks, 176.
Meyer, D. (2016). Time is running out for this popular online security technique. FORTUNE. Available at: http://fortune.com/2016/07/26/nist-sms-two-factor/
Hackett, R. (2016). You’re implementing this basic security feature all wrong. FORTUNE. Available at: http://fortune.com/2016/06/27/two-factor-authentication-sms-text/
McBride, T., Ekstrom, M., Lusty, L., Sexton, J., Townsend, A. (2017) Data Integrity: Recovering from Ransomware and Other Destructive Events. NIST Special Publication 1800-11. Available at: https://www.nccoe.nist.gov/sites/default/files/library/sp1800/di-nist-sp1800-11a-draft.pdf
Yevseiev, S., Korol, O., Kots, H. (2017). Construction of hybrid security systems based on the crypto-code structures and flawed codes. Eastern-European Journal of Enterprise Technologies, 4 (9 (88)), 4–21. doi: http://doi.org/10.15587/1729-4061.2017.108461
Shmatko, O., Balakireva, S., Vlasov, A., Zagorodna, N., Korol, O., Milov, O. et. al. (2020). Development of methodological foundations for designing a classifier of threats to cyberphysical systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (105)), 6–19. doi: http://doi.org/10.15587/1729-4061.2020.205702
Rukhin, A., Soto, J. (2000). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22. doi: http://doi.org/10.6028/nist.sp.800-22