The development of methods for evaluating the state of complex technical systems using artificial intelligence theory

Authors

Kharkiv National Automobile and Highway University, Ukraine
https://orcid.org/0000-0002-6912-6520
National Technical University “Kharkiv Polytechnic Institute”, Ukraine
https://orcid.org/0000-0002-0784-1465
The National Defense University of Ukraine, Ukraine
https://orcid.org/0000-0003-2183-7224
Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine, Ukraine
https://orcid.org/0000-0003-0160-7325
Kharkiv National Automobile and Highway University, Ukraine
https://orcid.org/0000-0003-0628-7893

Keywords:

Optimization problems, complex technical systems, multi-agent systems, artificial intelligence, reliability and adequacy

Synopsis

In this chapter of the research, the methods for assessing the state of complex technical systems using the theory of artificial intelligence are proposed. The basis of this research is the theory of artificial intelligence. The methods aimed at solving optimization tasks, variable solutions are defined in such a way that complex technical systems work at their best point (mode) based on the optimization criteria determined. In the research, the authors proposed:

– the method of assessing the state of complex technical systems using bio-inspired algorithms;

– the method of finding solutions using the population algorithm of global search optimization;

– the method of finding solutions using the improved algorithm of shoals of fish;

– the method of finding solutions using an improved algorithm of jumping frogs.

Each of the methods was based on canonical optimization algorithms, but they were improved by the authors of this research.

The essence of the improvement of these methods, which is the scientific novelty of each of them:

– taking into account a priori known coefficient regarding the degree of uncertainty of data about a complex technical system and the coefficient determined during the work of algorithms regarding the noise of the data;

– the procedure of deep training of agents of the flock allows, in the presence of reliable data, to significantly reduce the time for decision making;

– the reliability of decisions is improved due to the selection of swarm agents.

Selection in each of the algorithms is carried out using an improved genetic algorithm.

A limitation of the research is the need to have an initial condition database complex technical system, the need to take into account the time delay for collecting and proving information from sources of information extraction.

It is advisable to use the proposed approach to solve the tasks of evaluating complex and dynamic processes characterized by a high degree of complexity.

References

Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1 (5), 35–40.

Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301

Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940

Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353

Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554

Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020

Nechyporuk, O., Sova, O., Shyshatskyi, A., Kravchenko, S., Nalapko, O., Shknai, O. et al. (2023). Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects. Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 31–41. https://doi.org/10.15587/1729-4061.2023.276168

Koval, V., Nechyporuk, O., Shyshatskyi, A., Nalapko, O., Shknai, O., Zhyvylo, Y. et al. (2023). Improvement of the optimization method based on the cat pack algorithm. Eastern-European Journal of Enterprise Technologies, 1 (9 (121)), 41–48. https://doi.org/10.15587/1729-4061.2023.273786

Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079

Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025

Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023

Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233

Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114

Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046

Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001

Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013

Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2

Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. https://doi.org/10.5815/ijitcs.2013.11.04

Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197

Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718

Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01

Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. https://doi.org/10.20998/2522-9052.2020.4.07

Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05

Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14

Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of Assessment of the Efficiency of the Communication of Operational Troop Grouping System. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16

Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292

Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750

Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the secondorder adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578

Tarkhan, A. B., Zhuravskyi, Y., Shyshatskyi, A., Pluhina, T., Dudnyk, V., Kiris, I. et al. (2023). Development of a solution search method using an improved fish school algorithm. Eastern-European Journal of Enterprise Technologies, 4 (4 (124)), 27–33. https://doi.org/10.15587/1729-4061.2023.284315

Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009

Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122

Mohammed, B. A., Zhuk, O., Vozniak, R., Borysov, I., Petrozhalko, V., Davydov, I. et al. (2023). Improvement of the solution search method based on the cuckoo algorithm. Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 23–30. https://doi.org/10.15587/1729-4061.2023.277608

Mamoori, G. A., Sova, O., Zhuk, O., Repilo, I., Melnyk, B., Sus, S. et al. (2023). The development of solution search method using improved jumping frog algorithm. Eastern-European Journal of Enterprise Technologies, 4 (3 (124)), 45–53. https://doi.org/10.15587/1729-4061.2023.285292

Shyshatskyi, A., Romanov, O., Shknai, O., Babenko, V., Koshlan, O., Pluhina, T. et al. (2023). Development of a solution search method using the improved emperor penguin algorithm. Eastern-European Journal of Enterprise Technologies, 6 (4 (126)), 6–13. https://doi.org/10.15587/1729-4061.2023.291008

Thamer, K. A., Sova, O., Shaposhnikova, O., Yashchenok, V., Stanovska, I., Shostak, S. et al. (2024). Development of a solution search method using a combined bio-inspired algorithm. Eastern-European Journal of Enterprise Technologies, 1 (4 (127)), 6–13. https://doi.org/10.15587/1729-4061.2024.298205

Shyshatskyi, A. V., Zhuk, O. V., Neronov, S. M., Protas, N. M., Kashkevych, S. O. (2024). Sukupnist metodyk pidvyshchennia operatyvnosti pryiniattia rishen z vykorystanniam metaevrystychnykh alhorytmiv. Moderní aspekty vědy: XL. Mezinárodní Ekonomický Institut s.r.o., 529–557. Available at: http://perspectives.pp.ua/public/site/mono/mono-40.pdf

Shyshatskyi, A. V., Matsyi, O. B., Yashchenok, V. Zh., Trotsko, O. O., Kashkevych, S. O. (2024). Sukupnist metodyk pidvyshchennia operatyvnosti pryiniattia rishen z vykorystanniam kombinovanykh metaevrystychnykh alhorytmiv. Moderní aspekty vědy: XL. Mezinárodní Ekonomický Institut s.r.o., 558–594. Available at: http://perspectives.pp.ua/public/site/mono/mono-40.pdf

Kashkevych, S. O. (2023). Analiz modelei doslidzhennia skladnykh tekhnichnykh system. Modern scientific technologies and solutions of scientists to create the latest ideas. London, 290–294. Available at: https://isg-konf.com/uk/modern-scientific-technologies-and-solutions-of-scientists-to-create-the-latest-ideas/

Kashkevych, S. O., Voznytsia, A. S. (2023). The development of methods for finding solutions using the improved of locusts swarm algorithm. Global problems of improving scientific inventions. Kopenhahen, 271–276. Available at: https://isg-konf.com/uk/global-problems-of-improving-scientific-inventions/

Shyshatskyi, A. V., Lytvynenko, O. I., Zhuk, O. V., Artiukh, S. H., Kashkevych, S. O. (2023). Rozrobka metodyky pidvyshchennia operatyvnosti pryiniattia rishen v orhanizatsiino-tekhnichnykh systemakh. Development trends and improvement of old methods. Varshava, 422–431. Available at: https://isg-konf.com/uk/development-trends-and-improvement-of-old-methods/

Downloads

Pages

70-101

Published

August 16, 2024

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about the available publication format: PDF

PDF

ISBN-13 (15)

978-617-8360-04-7

How to Cite

Kashkevich, S., Plekhova, G., Kuchuk, N., Kuvshynov, O., Veretnov, A., & Yefymenko, O. (2024). The development of methods for evaluating the state of complex technical systems using artificial intelligence theory. In A. Shyshatskyi (Ed.), INFORMATION AND CONTROL SYSTEMS: MODELLING AND OPTIMIZATIONS (pp. 70–101). Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-8360-04-7.ch3