The development of methods for evaluating the state of complex technical systems using artificial intelligence theory
Keywords:
Optimization problems, complex technical systems, multi-agent systems, artificial intelligence, reliability and adequacySynopsis
In this chapter of the research, the methods for assessing the state of complex technical systems using the theory of artificial intelligence are proposed. The basis of this research is the theory of artificial intelligence. The methods aimed at solving optimization tasks, variable solutions are defined in such a way that complex technical systems work at their best point (mode) based on the optimization criteria determined. In the research, the authors proposed:
– the method of assessing the state of complex technical systems using bio-inspired algorithms;
– the method of finding solutions using the population algorithm of global search optimization;
– the method of finding solutions using the improved algorithm of shoals of fish;
– the method of finding solutions using an improved algorithm of jumping frogs.
Each of the methods was based on canonical optimization algorithms, but they were improved by the authors of this research.
The essence of the improvement of these methods, which is the scientific novelty of each of them:
– taking into account a priori known coefficient regarding the degree of uncertainty of data about a complex technical system and the coefficient determined during the work of algorithms regarding the noise of the data;
– the procedure of deep training of agents of the flock allows, in the presence of reliable data, to significantly reduce the time for decision making;
– the reliability of decisions is improved due to the selection of swarm agents.
Selection in each of the algorithms is carried out using an improved genetic algorithm.
A limitation of the research is the need to have an initial condition database complex technical system, the need to take into account the time delay for collecting and proving information from sources of information extraction.
It is advisable to use the proposed approach to solve the tasks of evaluating complex and dynamic processes characterized by a high degree of complexity.
References
Shyshatskyi, A. V., Bashkyrov, O. M., Kostyna, O. M. (2015). Rozvytok intehrovanykh system zviazku ta peredachi danykh dlia potreb Zbroinykh Syl. Ozbroiennia ta viiskova tekhnika, 1 (5), 35–40.
Dudnyk, V., Sinenko, Y., Matsyk, M., Demchenko, Y., Zhyvotovskyi, R., Repilo, I. et al. (2020). Development of a method for training artificial neural networks for intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (2 (105)), 37–47. https://doi.org/10.15587/1729-4061.2020.203301
Sova, O., Shyshatskyi, A., Salnikova, O., Zhuk, O., Trotsko, O., Hrokholskyi, Y. (2021). Development of a method for assessment and forecasting of the radio electronic environment. EUREKA: Physics and Engineering, 4, 30–40. https://doi.org/10.21303/2461-4262.2021.001940
Pievtsov, H., Turinskyi, O., Zhyvotovskyi, R., Sova, O., Zvieriev, O., Lanetskii, B., Shyshatskyi, A. (2020). Development of an advanced method of finding solutions for neuro-fuzzy expert systems of analysis of the radioelectronic situation. EUREKA: Physics and Engineering, 4, 78–89. https://doi.org/10.21303/2461-4262.2020.001353
Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O. et al. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (106)), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
Shyshatskyi, A., Zvieriev, O., Salnikova, O., Demchenko, Ye., Trotsko, O., Neroznak, Ye. (2020). Complex Methods of Processing Different Data in Intellectual Systems for Decision Support System. International Journal of Advanced Trends in Computer Science and Engineering, 9 (4), 5583–5590. https://doi.org/10.30534/ijatcse/2020/206942020
Nechyporuk, O., Sova, O., Shyshatskyi, A., Kravchenko, S., Nalapko, O., Shknai, O. et al. (2023). Development of a method of complex analysis and multidimensional forecasting of the state of intelligence objects. Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 31–41. https://doi.org/10.15587/1729-4061.2023.276168
Koval, V., Nechyporuk, O., Shyshatskyi, A., Nalapko, O., Shknai, O., Zhyvylo, Y. et al. (2023). Improvement of the optimization method based on the cat pack algorithm. Eastern-European Journal of Enterprise Technologies, 1 (9 (121)), 41–48. https://doi.org/10.15587/1729-4061.2023.273786
Ko, Y.-C., Fujita, H. (2019). An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Information Sciences, 486, 190–203. https://doi.org/10.1016/j.ins.2019.01.079
Ramaji, I. J., Memari, A. M. (2018). Interpretation of structural analytical models from the coordination view in building information models. Automation in Construction, 90, 117–133. https://doi.org/10.1016/j.autcon.2018.02.025
Pérez-González, C. J., Colebrook, M., Roda-García, J. L., Rosa-Remedios, C. B. (2019). Developing a data analytics platform to support decision making in emergency and security management. Expert Systems with Applications, 120, 167–184. https://doi.org/10.1016/j.eswa.2018.11.023
Chen, H. (2018). Evaluation of Personalized Service Level for Library Information Management Based on Fuzzy Analytic Hierarchy Process. Procedia Computer Science, 131, 952–958. https://doi.org/10.1016/j.procs.2018.04.233
Chan, H. K., Sun, X., Chung, S.-H. (2019). When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decision Support Systems, 125, 113114. https://doi.org/10.1016/j.dss.2019.113114
Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620–633. https://doi.org/10.1016/j.future.2018.06.046
Gödri, I., Kardos, C., Pfeiffer, A., Váncza, J. (2019). Data analytics-based decision support workflow for high-mix low-volume production systems. CIRP Annals, 68 (1), 471–474. https://doi.org/10.1016/j.cirp.2019.04.001
Harding, J. L. (2013). Data quality in the integration and analysis of data from multiple sources: some research challenges. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W1, 59–63. https://doi.org/10.5194/isprsarchives-xl-2-w1-59-2013
Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24 (1), 65–75. https://doi.org/10.1016/s0020-7373(86)80040-2
Orouskhani, M., Orouskhani, Y., Mansouri, M., Teshnehlab, M. (2013). A Novel Cat Swarm Optimization Algorithm for Unconstrained Optimization Problems. International Journal of Information Technology and Computer Science, 5 (11), 32–41. https://doi.org/10.5815/ijitcs.2013.11.04
Koshlan, A., Salnikova, O., Chekhovska, M., Zhyvotovskyi, R., Prokopenko, Y., Hurskyi, T. et al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. https://doi.org/10.15587/1729-4061.2019.180197
Mahdi, Q. A., Shyshatskyi, A., Prokopenko, Y., Ivakhnenko, T., Kupriyenko, D., Golian, V. et al. (2021). Development of estimation and forecasting method in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 3 (9 (111)), 51–62. https://doi.org/10.15587/1729-4061.2021.232718
Gorokhovatsky, V., Stiahlyk, N., Tsarevska, V. (2021). Combination method of accelerated metric data search in image classification problems. Advanced Information Systems, 5 (3), 5–12. https://doi.org/10.20998/2522-9052.2021.3.01
Levashenko, V., Liashenko, O., Kuchuk, H. (2020). Building Decision Support Systems based on Fuzzy Data. Advanced Information Systems, 4 (4), 48–56. https://doi.org/10.20998/2522-9052.2020.4.07
Meleshko, Y., Drieiev, O., Drieieva, H. (2020). Method of identification bot profiles based on neural networks in recommendation systems. Advanced Information Systems, 4 (2), 24–28. https://doi.org/10.20998/2522-9052.2020.2.05
Kuchuk, N., Merlak, V., Skorodelov, V. (2020). A method of reducing access time to poorly structured data. Advanced Information Systems, 4 (1), 97–102. https://doi.org/10.20998/2522-9052.2020.1.14
Shyshatskyi, A., Tiurnikov, M., Suhak, S., Bondar, O., Melnyk, A., Bokhno, T., Lyashenko, A. (2020). Method of Assessment of the Efficiency of the Communication of Operational Troop Grouping System. Advanced Information Systems, 4 (1), 107–112. https://doi.org/10.20998/2522-9052.2020.1.16
Raskin, L., Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5 (4 (83)), 23–28. https://doi.org/10.15587/1729-4061.2016.81292
Lytvyn, V., Vysotska, V., Pukach, P., Brodyak, O., Ugryn, D. (2017). Development of a method for determining the keywords in the slavic language texts based on the technology of web mining. Eastern-European Journal of Enterprise Technologies, 2 (2 (86)), 14–23. https://doi.org/10.15587/1729-4061.2017.98750
Stepanenko, A., Oliinyk, A., Deineha, L., Zaiko, T. (2018). Development of the method for decomposition of superpositions of unknown pulsed signals using the secondorder adaptive spectral analysis. Eastern-European Journal of Enterprise Technologies, 2 (9 (92)), 48–54. https://doi.org/10.15587/1729-4061.2018.126578
Tarkhan, A. B., Zhuravskyi, Y., Shyshatskyi, A., Pluhina, T., Dudnyk, V., Kiris, I. et al. (2023). Development of a solution search method using an improved fish school algorithm. Eastern-European Journal of Enterprise Technologies, 4 (4 (124)), 27–33. https://doi.org/10.15587/1729-4061.2023.284315
Koval, M., Sova, O., Orlov, O., Shyshatskyi, A., Artabaiev, Y., Shknai, O. et al. (2022). Improvement of complex resource management of special-purpose communication systems. Eastern-European Journal of Enterprise Technologies, 5 (9 (119)), 34–44. https://doi.org/10.15587/1729-4061.2022.266009
Sova, O., Radzivilov, H., Shyshatskyi, A., Shvets, P., Tkachenko, V., Nevhad, S. et al. (2022). Development of a method to improve the reliability of assessing the condition of the monitoring object in special-purpose information systems. Eastern-European Journal of Enterprise Technologies, 2 (3 (116)), 6–14. https://doi.org/10.15587/1729-4061.2022.254122
Mohammed, B. A., Zhuk, O., Vozniak, R., Borysov, I., Petrozhalko, V., Davydov, I. et al. (2023). Improvement of the solution search method based on the cuckoo algorithm. Eastern-European Journal of Enterprise Technologies, 2 (4 (122)), 23–30. https://doi.org/10.15587/1729-4061.2023.277608
Mamoori, G. A., Sova, O., Zhuk, O., Repilo, I., Melnyk, B., Sus, S. et al. (2023). The development of solution search method using improved jumping frog algorithm. Eastern-European Journal of Enterprise Technologies, 4 (3 (124)), 45–53. https://doi.org/10.15587/1729-4061.2023.285292
Shyshatskyi, A., Romanov, O., Shknai, O., Babenko, V., Koshlan, O., Pluhina, T. et al. (2023). Development of a solution search method using the improved emperor penguin algorithm. Eastern-European Journal of Enterprise Technologies, 6 (4 (126)), 6–13. https://doi.org/10.15587/1729-4061.2023.291008
Thamer, K. A., Sova, O., Shaposhnikova, O., Yashchenok, V., Stanovska, I., Shostak, S. et al. (2024). Development of a solution search method using a combined bio-inspired algorithm. Eastern-European Journal of Enterprise Technologies, 1 (4 (127)), 6–13. https://doi.org/10.15587/1729-4061.2024.298205
Shyshatskyi, A. V., Zhuk, O. V., Neronov, S. M., Protas, N. M., Kashkevych, S. O. (2024). Sukupnist metodyk pidvyshchennia operatyvnosti pryiniattia rishen z vykorystanniam metaevrystychnykh alhorytmiv. Moderní aspekty vědy: XL. Mezinárodní Ekonomický Institut s.r.o., 529–557. Available at: http://perspectives.pp.ua/public/site/mono/mono-40.pdf
Shyshatskyi, A. V., Matsyi, O. B., Yashchenok, V. Zh., Trotsko, O. O., Kashkevych, S. O. (2024). Sukupnist metodyk pidvyshchennia operatyvnosti pryiniattia rishen z vykorystanniam kombinovanykh metaevrystychnykh alhorytmiv. Moderní aspekty vědy: XL. Mezinárodní Ekonomický Institut s.r.o., 558–594. Available at: http://perspectives.pp.ua/public/site/mono/mono-40.pdf
Kashkevych, S. O. (2023). Analiz modelei doslidzhennia skladnykh tekhnichnykh system. Modern scientific technologies and solutions of scientists to create the latest ideas. London, 290–294. Available at: https://isg-konf.com/uk/modern-scientific-technologies-and-solutions-of-scientists-to-create-the-latest-ideas/
Kashkevych, S. O., Voznytsia, A. S. (2023). The development of methods for finding solutions using the improved of locusts swarm algorithm. Global problems of improving scientific inventions. Kopenhahen, 271–276. Available at: https://isg-konf.com/uk/global-problems-of-improving-scientific-inventions/
Shyshatskyi, A. V., Lytvynenko, O. I., Zhuk, O. V., Artiukh, S. H., Kashkevych, S. O. (2023). Rozrobka metodyky pidvyshchennia operatyvnosti pryiniattia rishen v orhanizatsiino-tekhnichnykh systemakh. Development trends and improvement of old methods. Varshava, 422–431. Available at: https://isg-konf.com/uk/development-trends-and-improvement-of-old-methods/

