ENERGY FACILITIES: MANAGEMENT AND DESIGN AND TECHNOLOGICAL INNOVATIONS

Authors

Andriy Polishchuk, JSC "Vinnytsiaoblenergo"; Volodymyr Kulyk, Vinnytsia National Technical University; Vira Teptya, Vinnytsia National Technical University; Sviatoslav Vishnevskyi, Vinnytsia National Technical University; Yurii Hrytsiuk, Lutsk National Technical University; Iryna Hrytsiuk, Lutsk National Technical University; Viacheslav Komar, Vinnytsia National Technical University; Petro Lezhniuk, Vinnytsia National Technical University; Vladyslav Lesko, Vinnytsia National Technical University; Yuliya Malogulko, Vinnytsia National Technical University; Volodymyr Netrebskyi, Vinnytsia National Technical University; Olena Sikorska, Vinnytsia National Technical University; Volodymyr Khomenko, Kyiv National University of Technologies and Design; Oksana Chernysh, Kyiv National University of Technologies and Design; Viacheslav Barsukov, Kyiv National University of Technologies and Design; Viktor Tverdokhlib, Kyiv National University of Technologies and Design; Arkadij Berezovskij, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine; Volodymyr Slobodianyk, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine; Natalia Minska, National University of Civil Defence of Ukraine; Roman Shevchenko, National University of Civil Defence of Ukraine; Vasyl Servatyuk, National Defence University of Ukraine named after Ivan Cherniakhovskyi; Valery Strelets, The International Humanitarian Organization The Halo Trust in Ukraine; Victoria Lukashenko, National Aviation University; Yaroslav Kalchenko, National University of Civil Defence of Ukraine; Ernst Kussul, Universidad Nacional Autonoma de México; Tetyana Baydyk, Universidad Nacional Autonoma de México; Masuma Mammadova, Institute of Information Technology of Azerbaijan National Academy of Sciences; Jorge Luis Rodriguez Mendoza, Universidad de Colima

Keywords:

Advanced heating, power distribution system, renewable energy sources, power balance, electrochemical capacitor, porous carbonaceous material, film solar cell, solar concentrator

Synopsis

The collective monograph contains the results of scientific research on the management of energy facilities and the creation of elements of energy systems. A feature of the proposed approaches is the consideration of objects in several aspects: process control in distributed networks, the balance of production and consumption of electricity, innovative materials and technological solutions focused on the concept of using renewable and non-traditional energy sources.
Chapter 1 presents a solution to the problem of improving the methods and tools for optimizing reactive power flows in distribution networks with significant daily volatility in generation and consumption of electricity.
Chapter 2 proposes an algorithm for the method of matching the generation schedules of photovoltaic power plants with the electric load of the network as a possible solution for improving the balance in the electricity grid with renewable energy sources.
Chapter 3 describes the results of research and development of environmentally friendly methods for producing composite materials for electrochemical capacitors related to non-traditional rechargeable electric current sources.
Chapter 4 presents the results of a study of solar cells based on CdS/CdTe, intended for backup power supply of security systems and facility management in conditions of damage to the power supply system. Ways to improve the efficiency of such film solar cells are proposed.
Chapter 5 presents the development of several prototypes of compact, lightweight, and inexpensive solar concentrators, and proposes two assembly methods that overcome the main problem associated with automating the solar concentrator assembly process.

The monograph is intended for practitioners in the field of creating energy systems and managing power supply facilities, engineering and technical specialists, and designers. The monograph will also be useful for researchers and university teachers who use advanced research developments in the educational process in the relevant specialties, developing the skills of working with scientific information in future young professionals to generate new practical solutions.

ISBN 978-617-7319-63-3 (on-line)

------------------------------------------------------------------------------------------------------------------

How to Cite: Energy facilities: management and design and technological innovations (2022). Kharkiv: PC TECHNOLOGY CENTER, 224. doi: https://doi.org/10.15587/978-617-7319-63-3

------------------------------------------------------------------------------------------------------------------

Indexing:

scilit ouci.jpg dimen_(1).png b1.jpg ResearchGate_1.png arch imgonline-com-ua-Resize-8lhbZm409l.jpg engpaper Zenodo451.png openaire45.png scopus.png

 

CHAPTER 1 System of proactive control of reactive power flows in distributed electrical grids
by Andriy Polishchuk, Volodymyr Kulyk, Vira Teptya, Sviatoslav Vishnevskyi, Yurii Hrytsiuk, Iryna Hrytsiuk
https://doi.org/10.15587/978-617-7319-63-3.ch1

CHAPTER 2 Electricity consumption and renewable energy sources generation schedules coordination in electric networks for balance reliability increasing
by Viacheslav Komar, Petro Lezhniuk, Vladyslav Lesko, Yuliya Malogulko, Volodymyr Netrebskyi, Olena Sikorska
https://doi.org/10.15587/978-617-7319-63-3.ch2

CHAPTER 3 Composite materials based on water-soluble binders for electrochemical capacitors
by Volodymyr Khomenko, Oksana Chernysh, Viacheslav Barsukov, Viktor Tverdokhlib, Arkadij Berezovskij, Volodymyr Slobodianyk
https://doi.org/10.15587/978-617-7319-63-3.ch3

CHAPTER 4 Structural and technological solutions for film solar cells based on CdS/CdTe for reserve power supply of emergency prevention systems
by Natalia Minska, Roman Shevchenko, Vasyl Servatyuk, Valery Strelets, Victoria Lukashenko, Yaroslav Kalchenko
https://doi.org/10.15587/978-617-7319-63-3.ch4

CHAPTER 5 Solar concentrator applications in agriculture
by Ernst Kussul, Tetyana Baydyk, Masuma Mammadova, Jorge Luis Rodriguez Mendoza
https://doi.org/10.15587/978-617-7319-63-3.ch5

Author Biographies

Andriy Polishchuk, JSC "Vinnytsiaoblenergo"
Volodymyr Kulyk, Vinnytsia National Technical University

Doctor of Technical Sciences, Associate Professor
Department of Electric Stations and Systems
ID ORCID   https://orcid.org/0000-0002-7594-5661

Vira Teptya, Vinnytsia National Technical University

PhD, Associate Professor
Department of Electric Stations and Systems
ID ORCID   https://orcid.org/0000-0002-2792-0160

Sviatoslav Vishnevskyi, Vinnytsia National Technical University

PhD
Department of Electric Stations and Systems
ID ORCID   https://orcid.org/0000-0002-2159-603X

Yurii Hrytsiuk, Lutsk National Technical University

PhD, Associate Professor
Department of Electrical Engineering
ID ORCID   https://orcid.org/0000-0002-6463-3910

Iryna Hrytsiuk, Lutsk National Technical University

PhD, Associate Professor
Department of Electrical Engineering
ID ORCID   https://orcid.org/0000-0003-4472-306X

Viacheslav Komar, Vinnytsia National Technical University

Doctor of Technical Sciences, Professor
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0003-4969-8553

Petro Lezhniuk, Vinnytsia National Technical University

Doctor of Technical Sciences, Professor
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0002-9366-3553

Vladyslav Lesko, Vinnytsia National Technical University

PhD, Аssociate Рrofessor
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0002-5477-7080

Yuliya Malogulko, Vinnytsia National Technical University

PhD, Аssociate Рrofessor
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0002-6637-7391

Volodymyr Netrebskyi, Vinnytsia National Technical University

PhD, Аssociate Рrofessor
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0003-2855-1253

Olena Sikorska, Vinnytsia National Technical University

PhD, Senior Lecturer
Department of Electrical Plants and Systems
ID ORCID   http://orcid.org/0000-0001-7341-9724

Volodymyr Khomenko, Kyiv National University of Technologies and Design

Doctor of Technical Sciences, Associate Professor
Department of Electrochemical Power Engineering & Chemistry
ID ORCID   https://orcid.org/0000-0003-0013-8010

Oksana Chernysh, Kyiv National University of Technologies and Design

PhD, Senior Researcher
Department of Electrochemical Power Engineering & Chemistry
ID ORCID   https://orcid.org/0000-0002-9402-1595

Viacheslav Barsukov, Kyiv National University of Technologies and Design

Doctor of Chemical Sciences, Professor, Honored Worker of Science and Technology of Ukraine, Head of Department
Department of Electrochemical Power Engineering & Chemistry
ID ORCID   https://orcid.org/0000-0002-3041-2474

Viktor Tverdokhlib, Kyiv National University of Technologies and Design

PhD, Associate Professor
Department of Electrochemical Power Engineering & Chemistry
ID ORCID   https://orcid.org/0000-0002-5764-9842

Arkadij Berezovskij, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

PhD, Head of Department
Research Department
ID ORCID   https://orcid.org/0000-0001-9328-6586

Volodymyr Slobodianyk, Central Scientific Research Institute of Armament and Military Equipment of Armed Forces of Ukraine

PhD, Senior Researcher
Research Department
ID ORCID   https://orcid.org/0000-0001-5901-873X

Natalia Minska, National University of Civil Defence of Ukraine

Doctor of Technical Science, Associate Professor
Department of Special Chemistry and Chemical Engineering
ID ORCID   https://orcid.org/0000-0001-8438-0618

Roman Shevchenko, National University of Civil Defence of Ukraine

Doctor of Technical Science, Professor
Department of Automatic Security Systems and Information Technologies
ID ORCID   https://orcid.org/0000-0001-9634-6943

Vasyl Servatyuk, National Defence University of Ukraine named after Ivan Cherniakhovskyi

Doctor of Military Sciences, Рrofessor
Institute of State Military Administration
ID ORCID   https://orcid.org/0000-0002-6444-1425

Valery Strelets, The International Humanitarian Organization The Halo Trust in Ukraine
Victoria Lukashenko, National Aviation University

PhD, Associate Professor
Department of Computer Systems and Networks
ID ORCID   https://orcid.org/0000-0002-8898-2269

Yaroslav Kalchenko, National University of Civil Defence of Ukraine

Doctor of Philosophy
Department of Fire and Technogenic Safety of Facilities and Technologies
ID ORCID   https://orcid.org/0000-0002-3482-0782

Ernst Kussul, Universidad Nacional Autonoma de México

Doctor, Profesor, Investigator Titular C de T.C.
Instituto de Ciencias Aplicadas y Tecnología
ID ORCID   https://orcid.org/0000-0002-2849-2532

Tetyana Baydyk, Universidad Nacional Autonoma de México

Doctor, Profesor, Investigator Titular C de T.C.
Instituto de Ciencias Aplicadas y Tecnología
ID ORCID   https://orcid.org/0000-0002-3095-2032

Masuma Mammadova, Institute of Information Technology of Azerbaijan National Academy of Sciences

Doctor, Professor, Head of Department
Department of Number 15
ID ORCID   https://orcid.org/0000-0002-2205-1023

Jorge Luis Rodriguez Mendoza, Universidad de Colima

PhD student
Facultad de Ciencias Químicas
ID ORCID   https://orcid.org/0000-0001-6000-3623

References

Ramsami, P., Ah King, R. T. F. (2021). Dynamic Distribution Network Reconfiguration for Distributed Generation Integration: A Systematic Review. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). doi: https://doi.org/10.1109/ciycee53554.2021.9676972

Sahay, S., Samal, S., Nayak, S., Barik, P. K., Soni, R. K., Pradhan, A. (2022). Risks in an Active Distribution Network: A Review of the Literature. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). doi: https://doi.org/10.1109/icssit53264.2022.9716295

Ibrahim, I. A., Hossain, M. J. (2021). Low Voltage Distribution Networks Modeling and Unbalanced (Optimal) Power Flow: A Comprehensive Review. IEEE Access, 9, 143026–143084. doi: https://doi.org/10.1109/access.2021.3120803

Kulyk, V., Burykin, O., Pirnyak, V. (2017). Optimization of the placement of reactive power sources in the electric grid based on modeling of its ideal modes. Technology Audit and Production Reserves, 2 (1 (40)), 59–65. doi: https://doi.org/10.15587/2312-8372.2018.129237

Becker, W., Hable, M., Malsch, M., Stieger, T., Sommerwerk, F. (2017). Reactive power management by distribution system operators concept and experience. CIRED – Open Access Proceedings Journal, 2017 (1), 2509–2512. doi: https://doi.org/10.1049/oap-cired.2017.0347

Hinz, F., Most, D. (2018). Techno-Economic Evaluation of 110 kV Grid Reactive Power Support for the Transmission Grid. IEEE Transactions on Power Systems, 33 (5), 4809–4818. doi: https://doi.org/10.1109/tpwrs.2018.2816899

Zecchino, A., Marinelli, M., Træholt, C., Korpås, M. (2017). Guidelines for distribution system operators on reactive power provision by electric vehicles in low-voltage grids. CIRED – Open Access Proceedings Journal, 2017 (1), 1787–1791. doi: https://doi.org/10.1049/oap-cired.2017.0377

Narayan, S. R. (2003). Solved Nonlinear Optimization Problems" in Optimization Principles: Practical Applications to the Operation and Markets of the Electric Power Industry. New-York: Wiley-IEEE Press, 245–295.

Wang, L., Yang, J., Zhang, Q., Zhang, D., Huang, Y., Li, W., Shi, B. (2022). Research on Coordinated Reactive Power and Voltage Control Strategy for Regional Power Grids with High Penetration of Renewable Energy. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 1160–1165. doi: https://doi.org/10.1109/icpsasia55496.2022.9949876

Singh, P., Purey, P., Titare, L. S., Choube, S. C. (2017). Optimal reactive power dispatch for enhancement of static voltage stability using jaya algorithm. 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC). doi: https://doi.org/10.1109/icomicon.2017.8279044

Wong, K. P., Li, A., Law, T. M. Y. (1999). Advanced, constrained, genetic algorithm load flow method. IEE Proceedings – Generation, Transmission and Distribution, 146 (6), 609–618. doi: https://doi.org/10.1049/ip-gtd:19990638

Yin, S., Wu, L., Song, W., Wang, X. (2017). Multi-objective reactive power optimisation approach for the isolated grid of new energy clusters connected to VSC-HVDC. The Journal of Engineering, 2017 (13), 1024–1028. doi: https://doi.org/10.1049/joe.2017.0484

Khan, S., Bahadoorsingh, S., Rampersad, R., Sharma, C., Powell, C. (2018). Reactive power planning combining the reduced jacobian V-Q and voltage sensitivity indices on the sub-transmission network of a caribbean island power system. Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC). doi: https://doi.org/10.1109/tpec.2018.8312097

Kyrylenko, O. V., Seheda, M. S., Butkevych, O. F., Mazur, T. A. (2010). Matematychne modeliuvannia v elektroenerhetytsi. Lviv: Natsionalnyi universytet «Lvivska politekhnika», 608.

Idehen, I., Abraham, S., Gregory, Murphy, V. (2018). Reactive power and voltage control in a power grid: A game-theoretic approach. 2018 IEEE Texas Power and Energy Conference (TPEC). doi: https://doi.org/10.1109/tpec.2018.8312103

Liang, C. H., Chung, C. Y., Wong, K. P., Duan, X. Z. (2007). Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition. IEEE Transactions on Power Systems, 22 (1), 249–257. doi: https://doi.org/10.1109/tpwrs.2006.887889

Dehkordi, B. M. (2006). Optimal Voltage and Reactive Power Control Based on Multi-Objective Genetic Algorithm. 2006 International Conference on Power Electronic, Drives and Energy Systems. doi: https://doi.org/10.1109/pedes.2006.344226

Choi, J., Lee, K. Y. (2022). Genetic Algorithm for Generation Expansion Planning and Reactive Power Planning. Probabilistic Power System Expansion Planning with Renewable Energy Resources and Energy Storage Systems, 177–202. doi: https://doi.org/10.1002/9781119819042.ch10

Dai, C., Chen, W., Zhu, Y., Zhang, X. (2009). Seeker Optimization Algorithm for Optimal Reactive Power Dispatch. IEEE Transactions on Power Systems, 24 (3), 1218–1231. doi: https://doi.org/10.1109/tpwrs.2009.2021226

Saebi, J., Ghasemi, H., Afsharnia, S., Rajabi Mashhadi, H. (2012). Imperialist Competitive Algorithm for reactive power dispatch problem in electricity markets. 20th Iranian Conference on Electrical Engineering (ICEE2012), 433–437. doi: https://doi.org/10.1109/iraniancee.2012.6292397

Mahesh, V., Deepeeha, J. R., Kamaraj, N. (2013). Reactive power dispatch and its pricing in re-structured electricity markets. 2013 International Conference on Power, Energy and Control (ICPEC), 377–381. doi: https://doi.org/10.1109/icpec.2013.6527685

Qingfu Zhang, Hui Li. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation, 11 (6), 712–731. doi: https://doi.org/10.1109/tevc.2007.892759

Zhou, B., Chan, K. W., Yu, T., Wei, H., Tang, J. (2014). Strength Pareto Multigroup Search Optimizer for Multiobjective Optimal Reactive Power Dispatch. IEEE Transactions on Industrial Informatics, 10 (2), 1012–1022. doi: https://doi.org/10.1109/tii.2014.2310634

Etehad, M. M., Siahkali, H. (2017). Multi-objective optimization of reactive power dispatch in power systems via SPMGSO algorithm. 2017 Smart Grid Conference (SGC). doi: https://doi.org/10.1109/sgc.2017.8308868

Bhattacharjee, T., Chakraborty, A. K. (2012). Congestion management in a deregulated power system using NSGAII. 2012 IEEE Fifth Power India Conference. doi: https://doi.org/10.1109/poweri.2012.6479529

Man-Im, A., Ongsakul, W., Singh, J. G., Boonchuay, C. (2015). Multi-objective optimal power flow using stochastic weight trade-off chaotic NSPSO. 2015 IEEE Innovative Smart Grid Technologies – Asia (ISGT ASIA). doi: https://doi.org/10.1109/isgt-asia.2015.7387120

Kulyk, V., Burykin, O., Juliya, M., Viktor, P. (2018). Optimization of Reactive Energy Flows in the Electric Grid Taking Into Account Allowable Voltage Fluctuations. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). Kharkiv, 265–270. doi: https://doi.org/10.1109/ieps.2018.8559542

Procopiou, A. T., Ochoa, L. F. (2017). Voltage Control in PV-Rich LV Networks Without Remote Monitoring. IEEE Transactions on Power Systems, 32 (2), 1224–1236. doi: https://doi.org/10.1109/tpwrs.2016.2591063

Liu, Y., Xia, W. B., Zheng, S., Wang, K., Wu, P., Fang, S. (2017). A semi-definite programming approach for solving optimal reactive power reserve dispatch. 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). doi: https://doi.org/10.1109/appeec.2017.8309019

Poliak, D. (2022). Review of Least Action Principle in Electromagnetics Part I: Derivation of Continuity Equation and Lorentz Force. 2022 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). doi: https://doi.org/10.23919/softcom55329.2022.9911297

Lezhniuk, P. D., Kulyk, V. V., Netrebskyi, V. V., Teptia, V. V. (2014). Pryntsyp naimenshoi dii v elektrotekhnitsi ta elektroenerhetytsi. Vinnytsia: UNIVERSUM-Vinnytsia, 212.

Ibrahim, S., Cramer, A., Liu, X., Liao, Y. (2018). PV inverter reactive power control for chance-constrained distribution system performance optimisation. IET Generation, Transmission & Distribution, 12 (5), 1089–1098. doi: https://doi.org/10.1049/iet-gtd.2017.0484

Zhibing, W., Yang, X., Xitian, W. (2017). Coordinated control strategy of reactive power for large-scale wind power transmission by LCC-HVDC links. The Journal of Engineering, 2017 (13), 1082–1086. doi: https://doi.org/10.1049/joe.2017.0496

Jizhong, Z. (2009). Reactive Power Optimization. Optimization of Power System Operation. New-York: Wiley-IEEE Press, 409–454. doi: https://doi.org/10.1002/9780470466971.ch10

Hu, Y., Xiang, J., Peng, Y., Yang, P., Wei, W. (2018). Decentralised control for reactive power sharing using adaptive virtual impedance. IET Generation, Transmission & Distribution, 12 (5), 1198–1205. doi: https://doi.org/10.1049/iet-gtd.2017.1036

Wen, S., Wang, Y., Tang, Y., Xu, Y., Li, P. (2019). Proactive frequency control based on ultra-short-term power fluctuation forecasting for high renewables penetrated power systems. IET Renewable Power Generation, 13 (12), 2166–2173. doi: https://doi.org/10.1049/iet-rpg.2019.0234

Ghiasi, M., Niknam, T., Dehghani, M., Baghaee, H. R., Wang, Z., Ghanbarian, M. M., Blaabjerg, F., Dragicevic, T. (2022). Multipurpose FCS Model Predictive Control of VSC-Based Microgrids for Islanded and Grid-Connected Operation Modes. IEEE Systems Journal, 1–12. doi: https://doi.org/10.1109/jsyst.2022.3215437

Kulyk, V., Burykin, O., Malogulko, J., Hrynyk, V. (2020). Anticipatory control of transit power flows from the renewable energy sources in electric power system. 2020 IEEE 7th International Conference on Energy Smart Systems (ESS), 123–127. doi: https://doi.org/10.1109/ess50319.2020.9160115

Pham, H. V., Ahmed, S. N. (2018). Multi-Agent based Approach for Intelligent Control of Reactive Power Injection in Transmission Systems. Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems. New-York: Wiley-IEEE Press, 269–282. doi: https://doi.org/10.1002/9781119214984.ch13

Zhu, Y., Fan, Q., Liu, B., Wang, T. (2018). An Enhanced Virtual Impedance Optimization Method for Reactive Power Sharing in Microgrids. IEEE Transactions on Power Electronics, 33 (12), 10390–10402. doi: https://doi.org/10.1109/tpel.2018.2810249

Aquino-Lugo, A. A., Overbye, T. (2010). Agent Technologies for Control Applications in the Power Grid. 2010 43rd Hawaii International Conference on System Sciences. doi: https://doi.org/10.1109/hicss.2010.43

Adhikari, S., Li, F., Li, H. (2015). P-Q and P-V Control of Photovoltaic Generators in Distribution Systems. IEEE Transactions on Smart Grid, 6 (6), 2929–2941. doi: https://doi.org/10.1109/tsg.2015.2429597

Aly, M. M., Abdel-Akher, M., Ziadi, Z., Senjyu, T. (2014). Assessment of reactive power contribution of photovoltaic energy systems on voltage profile and stability of distribution systems. International Journal of Electrical Power & Energy Systems, 61, 665–672. doi: https://doi.org/10.1016/j.ijepes.2014.02.040

Eid, A., Abdel-Akher, M. (2016). Voltage/var control of unbalanced distribution systems equipped with distributed single-phase PV generators. 2016 Eighteenth International Middle East Power Systems Conference (MEPCON). doi: https://doi.org/10.1109/mepcon.2016.7836930

Li, H., Huang, Y., Lu, J. (2016). Reactive power compensation and DC link voltage control using Fuzzy-PI on grid-connected PV system with d-STATCOM. 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), 1240–1244. doi: https://doi.org/10.1109/appeec.2016.7779691

Kulyk, V. V., Hrytsiuk, I. V., Hrytsiuk, Yu. V. (2013). Optymalne keruvannia po-tokamy reaktyvnoi potuzhnosti v rozpodilnykh elektromerezhakh z rozo-seredzhenym heneruvanniam. Pratsi Instytutu elektrodynamiky NANU, 151–158.

Burykin, O. B., Lezhniuk, P. D., Kulyk, V. V. (2008). Vzaiemovplyv elektrychnykh merezh i system v protsesi optymalnoho keruvannia yikh rezhymamy. Vinnytsia: UNIVERSUM–Vinnytsia.

Gryniewicz-Jaworska, M., Lezhniuk, P. D., Kulyk, V. V., Netrebskiy, V. V., Duchkov, Y. V. (2018). Adaptive optimal control of electric power system operation mode on the base of least action principle. Advances in Science and Technology Research Journal, 12 (3), 61–65. doi: https://doi.org/10.12913/22998624/94922

Lezhniuk, P., Bondarchuk, A., Shullie, I. (2019). Investigation and implementation of the fractal properties of electric load on civilian objects in order to efficiently predict and control electrical consumption. Eastern-European Journal of Enterprise Technologies, 3 (8 (99)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.168182

Lezhniuk, P., Kravchuk, S., Netrebskiy, V., Komar, V., Lesko, V. (2019). Forecasting Hourly Photovoltaic Generation On Day Ahead. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS). doi: https://doi.org/10.1109/ess.2019.8764245

Yue, X., Tu, M., Li, Y., Chang, G., Li, C. (2022). Stability and Cementation of the Surrounding Rock in Roof-Cutting and Pressure-Relief Entry under Mining Influence. Energies, 15 (3), 951. doi: https://doi.org/10.3390/en15030951

Hai, W., Kai, L., Cheng, Z., Yongcan, L. (2021). Research on Line Loss Improvement of Station Area in Distribution Network by Modular Photovoltaic Energy Storage System. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 1285–1289. doi: https://doi.org/10.1109/icpsasia52756.2021.9621597

Bondarenko, R., Dovgalyuk, O., Omelyanenko, G., Pirotti, O., Syromyatnikova, T. (2018). Increasing the reliability of the functioning of distribution electric networks. Bulletin of the Petro Vasylenko Kharkiv National Technical University of Agriculture, 195, 69–71.

Lezhniuk, P., Komar, V., Sobchuk, D. (2014). Determination of the optimal installed power of renewable energy sources in the distribution network by the criterion of minimum losses of active power. Scientific works of the Donetsk National Technical University. Series: Electrical engineering and energy, 1 (16), 130–136.

Ma, Y., Zhao, L., Zhang, Y., Zhou, Q., Zhang, M., Yang, S. (2020). Multi-objective Optimal Scheduling of Power Systems Based on Complementary Characteristics of Heterogeneous Energy Sources. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), 1533–1538. doi: https://doi.org/10.1109/ei250167.2020.9347052

Lezhniuk, P., Kotylko, I., Kravchuk, S. (2019). Increasing Electric Network Reliability by Dispersed Generation. 2019 IEEE 20th International Conference on Computational Problems of Electrical Engineering (CPEE). doi: https://doi.org/10.1109/cpee47179.2019.8949124

Lakshmi, G. S., Rubanenko, O., Hunko, I. (2021). Control of the Sectioned Electrical Network Modes with Renewable Energy Sources. 2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET). doi: https://doi.org/10.1109/sefet48154.2021.9375781

Faraji, J., Ketabi, A., Hashemi-Dezaki, H., Shafie-Khah, M., Catalao, J. P. S. (2020). Optimal Day-Ahead Self-Scheduling and Operation of Prosumer Microgrids Using Hybrid Machine Learning-Based Weather and Load Forecasting. IEEE Access, 8, 157284–157305. doi: https://doi.org/10.1109/access.2020.3019562

Grigorieva, N., Shabaykovich, V., Gumeniuk, L., Humeniuk, P., Dobrovolska, L., Sobchuk, D. (2020). Odnawialna energia elektryczna z dwutlenku węgla. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, 10 (1), 72–76. doi: https://doi.org/10.35784/iapgos.934

Lezhniuk, P., Rubanenko, O. (2021). Optimal solutions sensitivity analysis in complex systems in relative units. Scientific Research of the XXI Century. Vol. 2. California, 111–118. doi: https://doi.org/10.51587/9781-7364-13302-2021-002-111-118

Komar, V., Ostra, N., Kuzmyk, O., Hutsol, S. (2013). Evaluation of Dispersed Generation to Mode of Distributive Electric Networks.. Scientific works of the Donetsk National Technical University, 1 (14), 104–107.

Lezhnyuk, P., Komar, V., Sobchuk, D. (2014). Determining the optimal installed power of renewable energy sources in the distribution network by the criterion of minimum losses of active power. Scientific works of the Donetsk National Technical University Series: "Electrical engineering and energy", 1 (16), 130–135.

Lezhniuk, P. D., Komar, V. A., Sobchuk, D. S. (2014). Method for Determination of Optimal Installed Capacity of Renewable Sources of Energy by the Criterion of Minimum Losses of Active Power in Distribution System. Energy and Power Engineering, 6 (3), 37–46. doi: https://doi.org/10.4236/epe.2014.63005

Lezhnyuk, P., Komar, V., Buslavets, O. (2016). Impact of renewable sources of energy on the level of active power losses in distribution networks. 2016 2nd International Conference on Intelligent Energy and Power Systems (IEPS), 73–78. doi: https://doi.org/10.1109/ieps.2016.7521856

Commission Regulation (EU) 2016/1719 of 26 September 2016 establishing a guideline on forward capacity allocation (2016). European Commission. Official Journal of the European Union.

Electricity Balancing Guideline (2017). European Commission. Official Journal of the European Union, 312/6-312/53.

Demand Side Response. Policy paper (2014). ENTSOE. Available at: https://www.entsoe.eu/2014/09/23/demand_side_response_policy_paper/

Lezhniuk, P., Komar, V., Kravchuk, S. (2016). Coordination of schedules of generation of renewable energy sources and electric load in the local electric system. Bulletin of Kharkiv National Technical University of Rural Economy named after Pyotr Vasylenko. Technical sciences. Problems of energy supply and energy saving in the agricultural sector of Ukraine, 2, 30–37.

Lezhniuk, P., Komar, V., Kravchuk, S. (2016). Determination of optimal power reserves for carrying balance reliability of local electric system. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 42 (1214), 69–75. doi: https://doi.org/10.20998/2413-4295.2016.42.11

Varetsky, Y., Hanzelka, Z. (2016). Stochastic modelling of a hybrid renewable energy system. Tekhnichna Elektrodynamika, 2016 (2), 58–62. doi: https://doi.org/10.15407/techned2016.02.058

On Electricity Market (2017). Law of Ukraine No. 2019-VIII. 11.04.2017. Available at: http://zakon.rada.gov.ua/laws/show/2019-19

Kuznetsov, M. P. (2010). Methods of forecasting electricity generation by wind power plants. Renewable energy, 3, 42–47.

Kuznetsov, M. P., Lysenko, O. V. (2017). Possibilities of short-term forecasting of solar energy. Renewable energy, 1, 25–33.

Komar, V. O., Lesko, V. O. (2017). Balance reliability of electrical systems and the influence of renewable energy sources on it. Environmental safety and renewable energy sources, 98–101.

Kudrin, B. I. (2009). Elektrosnabzhenie promyshlennykh predpriiatii. Moscow: Teplotechnik, 698.

Chatterjee, S., Firat, A. (2007). Generating Data with Identical Statistics but Dissimilar Graphics. The American Statistician, 61 (3), 248–254. doi: https://doi.org/10.1198/000313007x220057

Komenda, N. V. (2011). Morphometric evaluation and criterion of uniformity of the schedule of electric loads. Bulletin of the National University "Lviv Polytechnic", 66, 42–46.

Komenda, N. V., Komenda, T. I., Demov, O. D. (2010). Search for consumers – regulators based on the morphometric approach in managing the daily load of an industrial enterprise. Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 27, 22–26.

Kyrylenko, O. V., Pavlovsky, V. V., Lukyanenko, L. M. (2011). Technical aspects of the implementation of distributed generation sources in electric networks. Technical electrodynamics, 1, 46-53.

Detailed Model of a 100-kW Grid-Connected PV Array (2017). Mathworks. Available at: https://www.mathworks.com/help/physmod/sps/examples/detailed-model-of-a-100-kw-grid-connected-pv-array.html?requestedDomain=true

Lezhniuk, P. D., Kovalchuk, O. A., Komar, V. O., Kravchuk, S. V. (2018). Mathematical modeling of reactive power regulation by photovoltaic stations. Renewable energy for energy efficiency of the 21st century, 273–277.

Wang, Y., Song, Y., Xia, Y. (2016). Electrochemical capacitors: mecha-nism, materials, systems, characterization and applications. Chemical Society Reviews, 45 (21), 5925–5950. doi: https://doi.org/10.1039/c5cs00580a

Ali, A., Andriyana, A. (2020). Properties of multifunctional composite materials based on nanomaterials: a review. RSC Advances, 10 (28), 16390–16403. doi: https://doi.org/10.1039/c9ra10594h

Malietin, Yu., Stryzhakova, N., Zelinskyi, S. et al. (2011). Cuperkondensatory – nakopychuvachi elektrychnoi enerhii z vykorystanniam nanorozmirnykh vuhletsevykh materialiv. Visnyk NAN Ukrainy, 12, 23–29.

Vivekchand, S. R. C., Rout, C. S., Subrahmanyam, K. S., Govindaraj, A., Rao, C. N. R. (2008). Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences, 120 (1), 9–13. doi: https://doi.org/10.1007/s12039-008-0002-7

Stoller, M., Zhu, Y., Ruoff, R. (2008). Graphene-based ultracapacitors. Proc. 18th Intern. Seminar on Double Layer Capacitors and Hybrid Energy Stor-age Devices, 4–7.

Burke, A. (2007). R&D considerations for the performance and applica-tion of electrochemical capacitors. Electrochimica Acta, 53 (3), 1083–1091. doi: https://doi.org/10.1016/j.electacta.2007.01.011

Kurzweil, P. (2009). HISTORY | Electrochemical Capacitors. Encyclo-pedia of Electrochemical Power Sources, 596–606. doi: https://doi.org/10.1016/b978-044452745-5.00006-x

Noori, A., El-Kady, M. F., Rahmanifar, M. S., Kaner, R. B., Mousavi, M. F. (2019). Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 48 (5), 1272–1341. doi: https://doi.org/10.1039/c8cs00581h

Murphy, T. C., Wright, R. B., Sutula, R. A. (1997). Electrochemical Ca-pacitors II, Proceedings. The Electrochemical Society. Pennington, 96, 258.

Miller, J. R., Burke, A. (2008). Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. The Electrochemical Society In-terface, 17 (1), 53–57. doi: https://doi.org/10.1149/2.f08081if

Delhaes, P. (2019). Graphite and Precursors. CRC Press, 312.

Drobnyi, D. M., Tychyna, S. O., Stryzhakova, N. H., Malietin, Yu. A. (2015). Polimerni materialy dlia kompozytnykh elektrodiv superkondensatoriv. Perspektyvni polimerni materialy ta tekhnolohii. Kyiv, 19–23.

Malietin, Yu. A., Shembel, O. M., Novak, P., Podmohilnyi, S. M., Stryzhakova, N. H., Izotov, V. Yu. et al. (2010). Pat. Ukrainy No. 90448 UA. Metod vyhotovlennia elektrodiv z nyzkym kontaktnym oporom dlia batarei ta kondensatoriv podviinoho sharu. MPK: H01G 9/00, H01G 9/155 (2006.01). No. a200506296. declareted: 25.06.2005; published: 11.15.2010.

Izotov, V. Yu., Biriukova, Yu. V. (2008). Pat. No. 35069U. Elektrod dlia kondensatoriv podviinoho elektrychnoho sharu. MPK: H01G 9/00. No. u200805440. declareted: 25.04.2008; published: 26.08.2008.

Baklan, V. Yu., Korolenko, S. D. (2010). Stan ta perspektyvy rozvytku khimichnykh dzherel strumu. Visnyk KNUTD, 5, 227–232.

Merena, R. I., Budzuliak, I. M., Hryhorchak, I. I. et al. (2004). Doslidzhennia kharakterystyk elektrokhimichnykh kondensatoriv, sformovanykh na osnovi aktyvovanoho vuhletsiu, modyfikovanoho vysokotemperaturnoiu obrobkoiu. Fizyka i khimiia tverdoho tila, 5 (4), 836–839.

Béguin, F., Presser, V., Balducci, A., Frackowiak, E. (2014). Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26 (14), 2219–2251. doi: https://doi.org/10.1002/adma.201304137

Conway, B. E. (1999). Electrochemical supercapacitors. Scientific fun-damentals and technological applications. New York, 698.

Drobnyi, D. (2017). Pat. No. WO2017025792 A1. Sposob izgotovleniia elektroda dlia elektrokhimicheskogo kondensatora dvoinogo sloia. MPK: H01G11/86; declareted: 09.08.2016; published: 16.02.2017.

Pashkevich, K., Yezhova, O., Kolosnichenko, M., Ostapenko, N., Kolosnichenko, E. (2018). Designing of the complex forms of women's clothing, considering the former properties of the materials. Man-Made Textiles in India, 46 (11), 372–380.

Ellis, B., Smith, R. (2020). Polymers A Property Database. CRC Press, 1052.

Horonovskyi, Y. T., Nazarenko, Yu. P., Nekreh, E. F. (1974). Kratkyi spravochnyk po khymyy. Kyiv: Naukova dumka, 830.

Barzic, A. I., Rawat, N. K., Haghi, A. K. (Eds.) (2021). Imidic Polymers and Green Polymer Chemistry. New York: Apple Academic Press, 380. doi: https://doi.org/10.1201/9781003057918

Schwartz, M. (2008). Smart Materials. CRC Press, 554.

Marphy, R., Krehl, P., Liang, C. (1981). Technologies for the Transition. 16th Intersociety Energy Conversion Engineering Conference. New York, 1, 97.

Perelmuter, V. (2017). Electrotechnical Systems. Simulation with Sim-ulink® and SimPowerSystems™. CRC Press, 450.

Gür, T. M. (2018). Review of electrical energy storage technologies, ma-terials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science, 11 (10), 2696–2767. doi: https://doi.org/10.1039/c8ee01419a

Broussely, M., Bodet, J. M., Staniewicz, R. J. (1994). Proceedings of the Symposium on Rechargeable Lithium and Litium-ion Batteries. Extended Ab-stracts of Fall Meeting of the Electrochemical Society. Maimi Beach, 224.

Pat. No. 2249455 FR. Kondensator pereminnoi yemnosti (1975). Kl. NO1 m 13/06, declareted: 29.10.73, published: 23.05.75.

Haghi, A. K., Ribeiro, A. C. F., Pogliani, L., Balköse, D., Torrens, F., Mukbaniani, O. V. (2021). Applied Chemistry and Chemical Engineering, Re-search Methodologies in Modern Chemistry and Applied Science. Apple Aca-demic Press, 390.

Moore, J. H., Spencer, N. D. (2001). Encyclopedia of Chemical Physics and Physical Chemistry. CRC Press, 2814.

Uendland, U. (1978). Termicheskie metody analiza. Moscow, 279.

Song, M.-K., Cairns, E. J., Zhang, Y. (2013). Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 5 (6), 2186–2204. doi: https://doi.org/10.1039/c2nr33044j

Kolosnichenkо, O., Yakovlev, M., Prykhodko-Kononenko, I., Tretya-kova, L., Ostapenko, N., Pashkevich, K., Ripka, G. (2020). Study of dominant quality indicators of materials and designs of railroad conductors’ uniforms. Vlákna a textile, 3 (27), 90–96.

Shlaiker, C., Young, С. (1980). Batteries for implantable biomedical de-vices. 29th Power Sources Symposium, 129.

Borshch, A. V., Chernysh, O. V. (2016). Porivniannia kharakterystyk polivinilidenftorydiv 6020 ta 5130 v elektrodnykh kompozytnykh materialakh. Naukovi rozrobky molodi na suchasnomu etapi, 1, 297.

Zaiets, O. V., Tverdokhlib, V. S. (2004). Vlastyvosti polimernoho zv’iazuiuchoho aktyvnykh mas litii-ionnykh dzherel strumu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 159.

Zaiets, O. V., Tverdokhlib, V. S. (2005). Vyvchennia vlastyvostei polimernoho zv’iazuiuchoho PVDF u yon-litiievykh dzherelakh strumu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 184.

Chernysh, O. V., Khomenko, V. H., Barsukov, V. Z., Borshch, A. V. (2016). Vplyv tekhnolohichnykh modyfikatsii polivinilidenftorydu na fizyko-mekhanichni vlastyvosti elektrodiv khimichnykh dzherel strumu. Visnyk KNUTD, 5, 141–148.

Wang, F., Wu, X., Yuan, X., Liu, Z., Zhang, Y., Fu, L., Zhu, Y., Zhou, Q., Wu, Y., Huang, W. (2017). Latest advances in supercapacitors: from new electrode materials to novel device designs. Chemical Society Reviews, 46 (22), 6816–6854. doi: https://doi.org/10.1039/c7cs00205j

Zaiets, O. V., Kolodii, I. O., Mykoliuk, S. V. (2006). Optymizatsiia umov vysushuvannia aktyvnykh mas litii-ionnykh KhDS. Naukovi rozrobky molodi na suchasnomu etapi, 1, 232.

Veres, A. R., Drahan, D. R., Chernysh, O. V. (2014). Mozhlyvosti vykorystannia vodorozchynnykh zv’iazuiuchykh v kompozytnykh elektrodnykh materialakh. Naukovi rozrobky molodi na suchasnomu etapi, 1, 367–368.

Zhao, W. (2020). Handbook for Chemical Process Research and Development. CRC Press, 858.

Simon, P., Gogotsi, Y. (2020). Perspectives for electrochemical ca-pacitors and related devices. Nature Materials, 19 (11), 1151–1163. doi: https://doi.org/10.1038/s41563-020-0747-z

Wypych, G. (2016). Handbook of Polymers. ChemTec Publishing, 706. doi: https://doi.org/10.1016/c2015-0-01462-9

Namsheer, K., Rout, C. S. (2021). Conducting polymers: a comprehen-sive review on recent advances in synthesis, properties and applications. RSC Advances, 11 (10), 5659–5697. doi: https://doi.org/10.1039/d0ra07800j

Barsukov, V. Z., Khomenko, V. G., Chernysh, O. V. et al. (2016). Perspektivnye materialy i tekhnologii dlia sovremennykh KhIT i elektronnoi tekhniki. Sovremennye elektrokhimicheskie tekhnologii i oborudovanie. Minsk, 147–148.

Barsukov, V., Khomenko, V., Chernysh, O., Makyeyeva, I. (2016). Modern materials for lithium-ion batteries and supercapacitors. 11th Internation-al conference on physics of advanced materials. Cluj-Napoca, 122.

Hank Ellison, D. (2022). Handbook of Chemical and Biological Warfare Agents. CRC Press, 838. doi: https://doi.org/10.4324/9781003230564

Saldívar-Guerra, E., Vivaldo-Lima, E. (Eds.) (2013). Handbook of Polymer Synthesis, Characterization, and Processing. John Wiley & Sons, Inc., 622. doi: https://doi.org/10.1002/9781118480793

Lendlein, A., Sisson, A. (Eds.) (2001). Handbook of Biodegradable Polymers: Synthesis, Characterization and Applications. WILEY-VCH, 426.

Balköse, D., Horak, D., Šoltés, L. (2021). Key Engineering Materials, Current State-of-the-Art on Novel Materials. Apple Academic Press, 584.

Roy Crompton, T. (2017). Organic Compounds in Natural Waters Anal-ysis and Determination. CRC Press, 306.

Peebles, L. H. (1995). Carbon Fibers Formation, Structure, and Proper-ties. CRC Press, 218.

Dragan, E. S. (2021). Advanced Separations by Specialized Sorbents. CRC Press, 358.

Webster, G. K., Kott, L. (Eds.) (2019). Chromatographic Methods Development. Jenny Stanford Publishing, 566. doi: https://doi.org/10.1201/9780429201721

Uwamariya, V. (2014). Adsorptive Removal of Heavy Metals from Groundwater by Iron Oxide Based Adsorbents. CRC Press, 160.

Barsukov, V. Z., Il’in, E. A., Likhnitskii, K. V., Zayats, O. V., Tverdokhleb, V. S., Kryukov, V. V. et al. (2008). Graphites from the Zavalie de-posit as active materials for lithium-ion batteries. Russian Journal of Electro-chemistry, 44 (5), 579–584. doi: https://doi.org/10.1134/s1023193508050121

Lynch, C. T. (2021). CRC Handbook of Materials Science. Material Composites and Refractory Materials. CRC Press, 654.

Barsukov, V. Z., Chernysh, O. V., Plavan, V. P. (2013). Stiikist do okyslennia zvychainoho i modyfikovanoho rozshyrenoho hrafitu. Tekhnolohii ta dyzain. Khimichni tekhnolohii ta ekolohichna bezpeka, 3, 1–8.

Khomenko, V. H., Barsukov, V. Z., Makieieva, I. S., Chernysh, O. V. (2016). Vplyv hrafitovykh materialiv na elektrychni kharakterystyky litii-ionnykh kondensatoriv. Perspektyvni materialy ta protsesy v tekhnichnii elektrokhimii. Kyiv, 22–26.

Zaiets, O. V., Shkromyda, R. V., Davydov, O. S. (2006). Vplyv dyspersnosti chastochok na vlastyvosti pryrodnoho hrafitu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 233.

Barsukov, V., Langouche, F., Khomenko, V., Makyeyeva, I., Chernysh, O., Gauthy, F. (2015). Modeling of porous graphite electrodes of hybride electro-chemical capacitors and lithium-ion batteries. Journal of Solid State Electrochem-istry, 19 (9), 2723–2732. doi: https://doi.org/10.1007/s10008-015-2835-6

Kim, J.-A., Park, I.-S., Seo, J.-H., Lee, J.-J. (2014). A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes. Transactions on Electrical and Electronic Materials, 15 (2), 81–86. doi: https://doi.org/10.4313/teem.2014.15.2.81

Chernysh, S. I., Chernysh, I. H., Nikitin, Yu. O., Loboda, P. I. (2008). Pro vplyv metodiv dysperhuvannia na mikrostrukturu i morfolohiiu dyspersnykh chastynok pryrodnoho hrafitu ta termohrafenitu. Naukovi visti NTUU “KPI”, 1, 76–80.

Wang, G., Yu, M., Feng, X. (2021). Carbon materials for ion-intercalation involved rechargeable battery technologies. Chemical Society Re-views, 50 (4), 2388–2443. doi: https://doi.org/10.1039/d0cs00187b

Struminska, T. V., Kolosnichenko, S. I., Chuprina, E. V., Ostapenko, N. V. (2019). Designing of special clothing based on experimental researches of ma-terial properties. Fibres and Textiles, 26 (4), 84–95.

Khomenko, V., Raymundo-Piñero, E., Béguin, F. (2008). High-energy density graphite/AC capacitor in organic electrolyte. Journal of Power Sources, 177 (2), 643–651. doi: https://doi.org/10.1016/j.jpowsour.2007.11.101

Cao, W. J., Zheng, J. P. (2012). Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. Journal of Power Sources, 213, 180–185. doi: https://doi.org/10.1016/j.jpowsour.2012.04.033

Schroeder, M., Winter, M., Passerini, S., Balducci, A. (2012). On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Ca-pacitors. Journal of The Electrochemical Society, 159 (8), A1240–A1245. doi: https://doi.org/10.1149/2.050208jes

Rezqita, A., Hamid, R., Schwarz, S., Kronberger, H., Trifonova, A. (2015). Conductive Additive for Si/Mesoporous Carbon Anode for Li-Ion Batter-ies: Commercial Graphite vs Carbon Black C65. ECS Transactions, 66 (9), 17–27. doi: https://doi.org/10.1149/06609.0017ecst

Schütter, C., Ramirez-Castro, C., Oljaca, M., Passerini, S., Winter, M., Balducci, A. (2014). Activated Carbon, Carbon Blacks and Graphene Based Na-noplatelets as Active Materials for Electrochemical Double Layer Capacitors: A Comparative Study. Journal of The Electrochemical Society, 162 (1), A44–A51. doi: https://doi.org/10.1149/2.0381501jes

Chernysh, O. V., Khomenko, V. H., Barsukov, V. Z. (2016). Vplyv morfolohii poverkhni aliuminiievoho strumovidvodu na adheziiu elektrodnoho materialu i opir elektrokhimichnoho kondensatora. Visnyk KNUTD, 6, 188–194.

Borshch, A. V., Chernysh, O. V. (2015). Doslidzhennia nadiinosti kontaktu robochoi masy superkondensatora do metalevoho strumovidvodu. Naukovi rozrobky molodi na suchasnomu etapi, 1, 316.

Khomenko, V., Barsukov, V., Chernysh, O., Makyeyeva, I., Isikli, S., Gauthy, F. (2016). Green Alternative binders for high-voltage electrochemical capacitors. IOP Conference Series: Materials Science and Engineering, 111, 012025. doi: https://doi.org/10.1088/1757-899x/111/1/012025

Chernysh, O. V., Khomenko, V. H., Makieieva, I. S., Barsukov, V. Z. (2015). Vodorozchynni polimerni kompozytsii dlia khimichnykh dzherel strumu. Perspektyvni polimerni materialy ta tekhnolohii. Kyiv, 101–106.

Barsukov, V., Khomenko, V., Chernysh, O. et al. (2015). Green alterna-tive binders for high voltage electrochemical capacitors and lithium-ion batteries. Baltic Polymer Symposium. Sigulda, 35.

Barsukov, V. Z., Khomenko, V. G., Senik, I. V., Chernysh, O. V. (2013). Litievye batarei dlia primeneniia na transporte: sovremennye problemy i perspektivy. Voprosy khimii i khimicheskoi tekhnologi, 4, 127–131.

Khomenko, V., Barsukov, V., Chernysh, O. et al. (2015). Development of Advanced Lithium-Ion Capacitors. 6th International Conference on Carbon for Energy Storage, Conversion and Environment Protection “CESEP' 2015”. Poz-nan, 64.

Rashkevich, N., Shevchenko, R., Khmyrov, I., Soshinskiy, A. (2021). Investigation of the Influence of the Physical Properties of Landfill Soils on the Stability of Slopes in the Context of Solving Civil Security Problems. Materials Science Forum, 1038, 407–416. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.407

Yeremenko, S., Sydorenko, V., Andrii, P., Shevchenko, R., Vlasenko, Y. (2021). Existing Risks of Forest Fires in Radiation Contaminated Areas: A Critical Review. Ecological Questions, 32 (3), 35–47. doi: https://doi.org/10.12775/eq.2021.022

Gurbanova, M., Loboichenko, V., Leonova, N., Strelets, V., Shevchenko, R. (2020). Comparative assessment of the ecological characteristics of auxiliary organic compounds in the composition of foaming agents used for fire fighting. Вulletin of the Georgian National Academy of Sciences, 14 (4), 58–66.

Kirichenko, M. V., Zaitsev, R. V., Deyneko, N. V., Kopach, V. R., Antonova, V. A., Listratenko, A. M. (2008). Influence of Constructive and Technological Solutions of Silicon Solar Cells on Minority Carrier Parameters of Base Crystals. Telecommunications and Radio Engineering, 67 (3), 227–240. doi: https://doi.org/10.1615/telecomradeng.v67.i3.40

Romeo, N., Bosio, A., Romeo, A. (2010). An innovative process suitable to produce high-efficiency CdTe/CdS thin-film modules. Solar Energy Materials and Solar Cells, 94 (1), 2–7. doi: https://doi.org/10.1016/j.solmat.2009.06.001

De Vos, A., Parrott, J., Baruch, P., Landsberg, P. (1994). Вandgap effects in thin-film heterojunction solar cells. Proceeding 12th European Photovoltaic Solar Energy Conference. Amsterdam, 1315–1319.

16.5 %-Efficient CdS/CdTe polycrystalline thin-film solar cell (2001). 17th European Photovoltaic Solar Energy Conference. Munich, 995–1000.

Köntges, M., Reineke-Koch, R., Nollet, P., Beier, J., Schäffler, R., Parisi, J. (2002). Light induced changes in the electrical behavior of CdTe and Cu(In,Ga)Se2 solar cells. Thin Solid Films, 403-404, 280–286. doi: https://doi.org/10.1016/s0040-6090(01)01507-3

Zeng, G., Zhang, J., Li, B., Li, W., Wu, L., Wang, W., Feng, L. (2015). Effects of different CdCl2 annealing methods on the performance of CdS/CdTe polycrystalline thin film solar cells. Science China Technological Sciences, 58 (5), 876–880. doi: https://doi.org/10.1007/s11431-015-5787-2

Riech, I., Peña, J. L., Ares, O., Rios-Flores, A., Rejón-Moo, V., Rodríguez-Fragoso, P., Mendoza-Alvarez, J. G. (2012). Effect of annealing time of CdCl2vapor treatment on CdTe/CdS interface properties. Semiconductor Science and Technology, 27 (4), 045015. doi: https://doi.org/10.1088/0268-1242/27/4/045015

Khrypunov, G. (2010). Development оrganic вack сontact for thin-film CdS/CdTe solar cell. Physics and Chemistry of Solid State, 11 (1), 248–251.

Wu, H. (2014). p-CdTe/n-CdS photovoltaic cells in the substrate configuration. University of Rochester.

Enzenroth, R. A., Barth, K. L., Sampath, W. S. (2005). Correlation of stability to varied CdCl2 treatment and related defects in CdS/CdTe PV devices as measured by thermal admittance spectroscopy. Journal of Physics and Chemistry of Solids, 66 (11), 1883–1886. doi: https://doi.org/10.1016/j.jpcs.2005.09.022

Bätzner, D. L., Romeo, A., Zogg, H., Wendt, R., Tiwari, A. N. (2001). Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films, 387 (1-2), 151–154. doi: https://doi.org/10.1016/s0040-6090(01)00792-1

Mamazza, R., Balasubramanian, U., More, D. L., Ferekides, C. S. (2002). Thin films of CdIn2O4 as transparent conducting oxides. Proceeding of the 29nd IEEE Photovoltaic Specialists Conference. Anaheim, 616–619. doi: https://doi.org/10.1109/pvsc.2002.1190640

Minami, T., Kakumu, T., Takeda, Y., Takata, S. (1996). Highly transparent and conductive ZnO In2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films, 290-291, 1–5. doi: https://doi.org/10.1016/s0040-6090(96)09094-3

Effect of CdCl2 treatment on the interior of CdTe crystal (2001). Proceeding Materials Research Society Symposium. San Francisco, H1.6.1–H1.6.12.

Romeo, A., Bätzner, D. L., Zogg, H., Tiwari, A. N. (2000). Recrystallization in CdTe/CdS. Thin Solid Films, 361-362, 420–425. doi: https://doi.org/10.1016/s0040-6090(99)00753-1

Sandhu, A., Kobayashi, K., Okamoto, T., Yamada, A., Konagai, M. (2001). Effect of CdCl2 Treatment Conditions on the Deep Level Density, Carrier Lifetime and Conversion Efficiency of CdTe Thin Film Solar Cells. MRS Proceedings. San Francisco, 668, H8.13.1-H8.13.6. doi: https://doi.org/10.1557/proc-668-h8.13

High-efficiency Cd2SnO4/Zn2SnO4/ZnxCd1-xS/CdS/CdTe polycrystalline thin-film solar cells (2002). Proc. 29th IEEE Photovotaics Specialists Conf. New Orleans, 470–474.

Demtsu, S. H., Sites, J. R. (2005). Quantification of losses in thin-film CdS/CdTe solar cells. Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, 347–350. doi: https://doi.org/10.1109/pvsc.2005.1488140

Schottky diode current (2002). Proc. 29th IEEE Photovotaics Specialists Conf. New Orleans, 535–538.

Terheggen, M., Heinrich, H., Kostorz, G., Baetzner, D., Romeo, A., Tiwari, A. N. (2004). Analysis of Bulk and Interface Phenomena in CdTe/CdS Thin-Film Solar Cells. Interface Science, 12 (2/3), 259–266. doi: https://doi.org/10.1023/b:ints.0000028655.11608.c7

Green, M. A. (1992). Solar cells: operating principles, technology and system applications. University of New South Wales. Kensington, 274.

Khrypunov, G., Meriuts, A., Klyui, N., Shelest, T., Deyneko, N., Kovtun, N. (2010). Development of back contact for CdS/CdTe thin-film solar cells. Functional materials, 17 (1), 114–119.

Bätzner, D. L., Wendt, R., Romeo, A., Zogg, H., Tiwari, A. N. (2000). A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films, 361-362, 463–467. doi: https://doi.org/10.1016/s0040-6090(99)00842-1

Meriuts, A. V., Khrypunov, G. S., Shelest, T. N., Deyneko, N. V. (2010). Features of the light current-voltage characteristics of bifacial solar cells based on thin CdTe layers. Semiconductors, 44 (6), 801–804. doi: https://doi.org/10.1134/s1063782610060187

Research, Solar Cell Production and Market Implementation of Photovoltaics (2004). European Commission, DG JRC, Institute for Environment and Sustainability Energies Unit Via Enrico Fermi 1; TP 450 I – 21020. Ispra, 95.

Mitchell, K., Fahrenbruch, A. L., Bube, R. H. (1977). Photovoltaic determination of optical‐absorption coefficient in CdTe. Journal of Applied Physics, 48 (2), 829–830. doi: https://doi.org/10.1063/1.323636

Khripunov, G. S., Sokol, E. I., Iakimenko, Iu. I., Meriutc, A. V., Ivashchuk, A. V., Shelest, T. N. (2014). Conversion of solar energy by combination solar cells based on CdTe and CuInSe₂. Fizika i tekhnika poluprovodnikov, 48 (12), 1671–1675.

Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., Powalla, M. (2011). New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20 %. Progress in Photovoltaics: Research and Applications, 19 (7), 894–897. doi: https://doi.org/10.1002/pip.1078

Khrypunov, G., Vambol, S., Deyneko, N., Sychikova, Y. (2016). Increasing the efficiency of film solar cells based on cadmium telluride. Eastern-European Journal of Enterprise Technologies, 6 (5 (84)), 12–18. doi: https://doi.org/10.15587/1729-4061.2016.85617

Li, J., Zhang, Y., Gao, T., Hu, C., Yao, T., Yuan, Q. et al. (2017). Quantum dot-induced improved performance of cadmium telluride (CdTe) solar cells without a Cu buffer layer. Journal of Materials Chemistry A, 5 (10), 4904–4911. doi: https://doi.org/10.1039/c6ta10441j

Deyneko, N., Khrypunov, G., Semkiv, O. (2018). Photoelectric Processes in Thin-film Solar Cells Based on CdS/CdTe with Organic Back Contact. Journal of Nano- and Electronic Physics, 10 (2), 02029-1–02029-4. doi: https://doi.org/10.21272/jnep.10(2).02029

Alonzo, J., Kochemba, W. M., Pickel, D. L., Ramanathan, M., Sun, Z., Li, D. et al. (2013). Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics. Nanoscale, 5 (19), 9357–9364. doi: https://doi.org/10.1039/c3nr02226a

Burmenko, A., Deyneko, N., Hrebtsova, I., Kryvulkin, I., Prokopenko, O., Shevchenko, R., Tarasenko, O. (2020). Investigating an alternative electricity supply system for preventing emergencies under conditions of limited capacity. Eastern-European Journal of Enterprise Technologies, 3 (12 (105)), 56–61. doi: https://doi.org/10.15587/1729-4061.2020.206395

Deyneko, N., Zhuravel, A., Mikhailova, L., Naden, E., Onyshchenko, A., Savchenko, A., Strelets, V., Yurevych, Y. (2020). Devising a technique to improve the efficiency of CdS/CdTe/Cu/Au solar cells intended for use as a backup power source for the systems of safety and control of objects. Eastern-European Journal of Enterprise Technologies, 6 (5 (108)), 21–27. doi: https://doi.org/10.15587/1729-4061.2020.220489

Deyneko, N., Yeremenko, S., Kamyshentsev, G., Kryvulkin, I., Matiushenko, M., Myroshnyk, O. et al. (2021). Development of a method for obtaining a CdS/CdTe/Cu/Au module on a flexible substrate designed for backup supplying systems prevention of emergency situations. Eastern-European Journal of Enterprise Technologies, 1 (5 (109)), 31–36. doi: https://doi.org/10.15587/1729-4061.2021.225694

Venkatesan, M., McGee, S., Mitra, U. (1989). Indium tin oxide thin films for metallization in microelectronic devices. Thin Solid Films, 170 (2), 151–162. doi: https://doi.org/10.1016/0040-6090(89)90719-0

Jeong, W.-J., Park, G.-C. (2001). Electrical and optical properties of ZnO thin film as a function of deposition parameters. Solar Energy Materials and Solar Cells, 65 (1-4), 37–45. doi: https://doi.org/10.1016/s0927-0248(00)00075-1

Deyneko, N., Semkiv, O., Khmyrov, I., Khryapynskyy, A. (2018). Investigation of the combination of ITO/CdS/CdTe/Cu/Au solar cells in microassembly for electrical supply of field cables. Eastern-European Journal of Enterprise Technologies, 1 (12 (91)), 18–23. doi: https://doi.org/10.15587/1729-4061.2018.124575

Chernykh, E. P., Khripunov, G. C., Boiko, B. T. (2002). Otcenka stekhiometrii absorbernykh sloev CuGaSe2 i CuIn0,7Ga0,3Se2 plenochnykh fotoelektricheskikh preobrazovatelei. Vіsnik Sumskogo derzhavnogo unіversitetu, 13 (46), 133–140.

Boyko, B., Khrypunov, G., Kharchenko, M., Chernikov, A. (2001). Examination of thermal stability of ZnO:Al films obtained by RF-magnetron sputtering without preheating of substrate. Proceeding of 17th European Photovoltaic Solar Energy Conversion and Exhibition. Munich, 1128–1130.

Boiko, B. T., Chernykh, O. P., Khrypunov, H. S., Kopach, H. Y. (2001). Plivkovi fotoelektrychni peretvoriuvachi na osnovi CuGaSe2. Fizyka i khimiia tverdoho tila, 2 (4), 549–558.

Khrypunov, G. S., Kopach, V. R., Meriuts, A. V., Zaitsev, R. V., Kirichenko, M. V., Deyneko, N. V. (2011). The influence of prolonged storage and forward-polarity voltage on the efficiency of CdS/CdTe-based film solar cells. Semiconductors, 45 (11), 1505–1511. doi: https://doi.org/10.1134/s1063782611110133

Bolbas, O., Deyneko, N., Yeremenko, S., Kyryllova, O., Myrgorod, O., Soshinsky, O. et al. (2019). Degradation of CdTe SC during operation: modeling and experiment. Eastern-European Journal of Enterprise Technologies, 6 (12 (102)), 46–51. doi: https://doi.org/10.15587/1729-4061.2019.185628

Vambol, S., Vambol, V., Sychikova, Y., Deyneko, N. (2017). Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 27–36. doi: https://doi.org/10.15587/1729-4061.2017.85847

Romeo, A., Bätzner, D. L., Zogg, H., Tiwari, A. N. (2001). Influence of proton irradiation and development of flexible CdTe solar cells on polyimide. MRS Proceedings. San Francisco, 668, H3.3.1-H3.3.6. doi: https://doi.org/10.1557/proc-668-h3.3

Batzner, D. L., Romeo, A., Zogg, H., Tiwari, A. N., Wendt, R. (2003). Effect of back contact metallization on the stability of CdTe/CdS solar cells. 16 European Photovoltaic Solar Energy Conference: Proceeding of the conference. Glagow, 353–356.

Leterrier, Y., Médico, L., Demarco, F., Månson, J.-A. E., Betz, U., Escolà, M. F. et al. (2004). Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films, 460 (1-2), 156–166. doi: https://doi.org/10.1016/j.tsf.2004.01.052

Leterrier, Y., Pinyol, A., Gilliéron, D., Månson, J.-A. E., Timmermans, P. H. M., Bouten, P. C. P. et al. (2010). Mechanical failure analysis of thin film transistor devices on steel and polyimide substrates for flexible display applications. Engineering Fracture Mechanics, 77 (4), 660–670. doi: https://doi.org/10.1016/j.engfracmech.2009.12.016

Borysenko, I., Burmenko, O., Deyneko, N., Zobenko, O., Yivzhenko, Y., Kamyshentsev, G. et al. (2021). Development of a method for producing effective CdS/CdTe/Cu/Au solar elements on a flexible substrate designed for backup supplying systems prevention of emergency situations. Eastern-European Journal of Enterprise Technologies, 6 (5 (114)), 6–11. doi: https://doi.org/10.15587/1729-4061.2021.247720

McCandless, B. E. (2001). Thermochemical and Kinetic Aspects of Cadmium Telluride Solar Cell Processing. MRS Proceedings, 668, H1.6.1–H1.6.10. doi: https://doi.org/10.1557/proc-668-h1.6

Deyneko, N., Semkiv, O., Soshinsky, O., Streletc, V., Shevchenko, R. (2018). Results of studying the Cu/ITO transparent back contacts for solar cells SnO2:F/CdS/CdTe/Cu/ITO. Eastern-European Journal of Enterprise Technologies, 4 (5 (94)), 29–34. doi: https://doi.org/10.15587/1729-4061.2018.139867

Izu, M., Ellison, T. (2003). Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics. Solar Energy Materials and Solar Cells, 78 (1-4), 613–626. doi: https://doi.org/10.1016/s0927-0248(02)00454-3

Deyneko, N., Kovalev, P., Semkiv, O., Khmyrov, I., Shevchenko, R. (2019). Development of a technique for restoring the efficiency of film ITO/CdS/CdTe/Cu/Au SCs after degradation. Eastern-European Journal of Enterprise Technologies, 1 (5 (97)), 6–12. doi: https://doi.org/10.15587/1729-4061.2019.156565

Söderström, K., Escarré, J., Cubero, O., Haug, F.-J., Perregaux, S., Ballif, C. (2010). UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells. Progress in Photovoltaics: Research and Applications, 19 (2), 202–210. doi: https://doi.org/10.1002/pip.1003

Deyneko, N., Kryvulkin, I., Matiushenko, M., Tarasenko, O., Khmyrov, I., Khmyrova, A., Shevchenko, R. (2019). Investigation of photoelectric converters with a base cadmium telluride layer with a decrease in its thickness for tandem and two-sided sensitive instrument structures. EUREKA: Physics and Engineering, 5, 73–80. doi: https://doi.org/10.21303/2461-4262.2019.001002

Deyneko, N. (2020). Study of Methods for Producing Flexible Solar Cells for Energy Supply of Emergency Source Control. Materials Science Forum, 1006, 267–272. doi: https://doi.org/10.4028/www.scientific.net/msf.1006.267

First Solar sets world record for CdTe solar cell efficiency (2014). Solar First. Available at: https://investor.firstsolar.com/news/press-release-details/2014/First-Solar-Sets-World-Record-for-CdTe-Solar-Cell-Efficiency/default.aspx

Analysis of climate policies of the countries of Eastern Europe, Caucasus and Central Asia (EECCA) (2020). CAN, 36. Available at: https://infoclimate.org/wp-content/uploads/2020/12/overview-of-climate-policies-eecca.pdf Last accessed: 19.08.2022

The Paris Agreement (2015). Available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement Last accessed: 19.08.2022

FAO Strategy on Climate Change (2017). Food and Agriculture Organization of the United Nations. Rome. Available at: https://agris.fao.org/agris-search/search.do?recordID=XF2018000291 Last accessed: 19.08.2022

Viana, C. M., Freire, D., Abrantes, P., Rocha, J., Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment, 806, 150718. doi: https://doi.org/10.1016/j.scitotenv.2021.150718

Majumdar, D., Pasqualetti, M. J. (2018). Dual use of agricultural land: Introducing ‘agrivoltaics’ in Phoenix Metropolitan Statistical Area, USA. Landscape and Urban Planning, 170, 150–168. doi: https://doi.org/10.1016/j.landurbplan.2017.10.011

Skuras, D., Psaltopoulos, D. (2012). A broad overview of the main problems derived from climate change that will affect agricultural production in the Mediterranean area. Building Resilience for Adaptation to Climate Change in the Agriculture Sector, 23, 217–260.

Zhu, X., Zhang, Z., Chen, X., Jia, F., Chai, Y. (2022). Nexus of mixed-use vitality, carbon emissions and sustainability of mixed-use rural communities: The case of Zhejiang. Journal of Cleaner Production, 330, 129766. doi: https://doi.org/10.1016/j.jclepro.2021.129766

World Population Prospects 2022. (2022). United Nation, 54. Available at: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf Last accessed: 19.08.2022

Global Report on Food Crises (2019). Food Security Information Network. Available at: http://www.fsinplatform.org/global-report-food-crises-2019 Last accessed: 19.08.2022

Dinesh, H., Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. doi: https://doi.org/10.1016/j.rser.2015.10.024

Global Renewables Outlook: Energy Transformation 2050 (2020). International Renewable Energy Agency. Abu Dhabi.

Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39 (4). doi: https://doi.org/10.1007/s13593-019-0581-3

Santra, P., Pande, P.C., Kumar, S., Mishra, D., Singh, R. K. (2017). Agri-voltaics or solar farming: the concept of integrating solar PV based electricity generation and crop production in a single land use system. International Journal of Renewable Energy Research, 7 (2), 694–699. doi: https://doi.org/10.20508/ijrer.v7i2.5582.g7049

Coşgun, A. E. (2021). The potential of Agrivoltaic systems in Turkey. Energy Reports, 7, 105–111. doi: https://doi.org/10.1016/j.egyr.2021.06.017

Zainol Abidin, M. A., Mahyuddin, M. N., Mohd Zainuri, M. A. A. (2021). Solar Photovoltaic Architecture and Agronomic Management in Agrivoltaic System: A Review. Sustainability, 13 (14), 7846. doi: https://doi.org/10.3390/su13147846

Cho, J., Park, S. M., Park, A. R., Lee, O. C., Nam, G., Ra, I.-H. (2020). Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies, 13 (18), 4815. doi: https://doi.org/10.3390/en13184815

Kussul, E., Baydyk, T., Estrada, A. E., González, M. T. R., Wunsch II, D. (2019). Solar concentrators manufacture and automation. Open Physics, 17 (1), 93–103. doi: https://doi.org/10.1515/phys-2019-0011

Ravi, S., Macknick, J., Lobell, D., Field, C., Ganesan, K., Jain, R., Elchinger, M., Stoltenberg, B. (2016). Colocation opportunities for large solar infrastructures and agriculture in drylands. Applied Energy, 165, 383–392. doi: https://doi.org/10.1016/j.apenergy.2015.12.078

Sekiyama, T., Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6 (6), 65. doi: https://doi.org/10.3390/environments6060065

Alemán-Nava, G. S., Casiano-Flores, V. H., Cárdenas-Chávez, D. L., Díaz-Chavez, R., Scarlat, N., Mahlknecht, J. et al. (2014). Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140–153. doi: https://doi.org/10.1016/j.rser.2014.01.004

Agostini, A., Colauzzi, M., Amaducci, S. (2021). Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281, 116102. doi: https://doi.org/10.1016/j.apenergy.2020.116102

World Bank list of economies (2021). Available at: https://cdn.ymaws.com/www.autism-insar.org/resource/resmgr/docs/world_bank_lists/world_bank_list_of_economies.pdf Last accessed: 19.08.2022

In-depth Review of the Energy Efficiency Policy of the Republic of Azerbaijan (2020). Available at: https://www.energycharter.org/what-we-do/energy-efficiency/energy-efficiency-country-reviews/in-depth-review-of-energy-efficiency-policies-and-programmes/in-depth-review-of-the-energy-efficiency-policy-of-the-republic-of-azerbaijan Last accessed: 19.08.2022

The use of renewable energy resources in Azerbaijan. Ministry of Energy of the Republic of Azerbaijan (2022). Available at: https://minenergy.gov.az/en/alternativ-ve-berpa-olunan-enerji/azerbaycanda-berpa-olunan-enerji-menbelerinden-istifade Last accessed: 19.08.2022

Veysey, J., Octaviano, C., Calvin, K., Martinez, S. H., Kitous, A., McFarland, J., van der Zwaan, B. (2016). Pathways to Mexico’s climate change mitigation targets: A multi-model analysis. Energy Economics, 56, 587–599. doi: https://doi.org/10.1016/j.eneco.2015.04.011

Energy Resource Guide. Mexico – Renewable Energy (2021). Available at: https://www.trade.gov/energy-resource-guide-mexico-renewable-energy Last accessed: 19.08.2022

Our World in Data based on BP Statistical Review of World Energy (2021). Available at: https://ourworldindata.org/energy/country/

Azerbaijan Renewable Energy Agency (2020). Decree No. 1159 of the President of the Republic of Azerbaijan dated 22 September 2020. Available at: https://minenergy.gov.az/en/ministry/nazirliyin-tabeliyinde-olan-qurumlar Last accessed: 20.08.2022

On the use of renewable energy sources in the production of electricity (2021). Тhe law of the Republic of Azerbaijan No. 339-VIQ. 31.05.2021. Available at: https://minenergy.gov.az/en/qanunlar Last accessed: 20.08.2022

General Law on Climate Change Mеxico. Available at: https://iea.blob.core.windows.net/assets/imports/events/13/GeneralClimateChangeLaw_Englishversion.pdf Last accessed: 20.08.2022

Development Program of the National Electrical System, 2022–2036 (2022). Secretaría de Energía. Available at: https://www.gob.mx/sener/articulos/programa-para-el-desarrollo-del-sistema-electrico-nacional-304042 Last accessed: 20.08.2022

Population. Available at: https://stat.gov.az/source/demoqraphy/?lang=en Last accessed: 20.08.2022

General information on nature of Azerbaijan. Available at: https://azerbaijan.az/en/information/201 Last accessed: 20.08.2022

Mexico population. Available at: https://countrymeters.info/en/Mexico#population_2022 Last accessed: 20.08.2022

Geography of Mexico. Available at: http://worldfacts.us/Mexico-geography.htm Last accessed: 20.08.2022

Agricultural land (% of land area). Available at: https://tradingeconomics.com/mexico/agricultural-land-percent-of-land-area-wb-data.html Last accessed: 20.08.2022

Climate-Azerbaijan. Available at: https://www.azerbaijans.com/content_457_en.html Last accessed: 20.08.2022

RAE Aliyev, Z. H. (2018). Agriculture in Azerbaijan and its Development Prospects. JOJ Sciences, 5, 555–572.

A Mexico Climate Overview. Available at: https://focusonmexico.com/climate-mexico/ Last accessed: 20.08.2022

Mexico sets world’s lowest solar price; Energy storage to hit 125 GW by 2030. Available at: https://www.reutersevents.com/renewables/pv-insider/mexico-sets-worlds-lowest-solar-price-energy-storage-hit-125-gw-2030 Last accessed: 20.08.2022

Azerbaijan 2030: National Priorities for Socio-Economic Develpment (2021). Order of the President of the Azerbaijan Republic 02.02.2021. Available at: https://president.az/en/articles/view/50474 Last accessed: 20.08.2022

On measures in connection with the creation of a "green energy" zone in the liberated territories of the Republic of Azerbaijan (2021). Order of the President of the Republic of Azerbaijan No. 2620. 03.05.2021. https://president.az/az/articles/view/51355/print Last accessed: 20.08.2022

On approval of the Action Plan on establishment of a "green zone" in the territories of the Republic of Azerbaijan liberated from occupation in 2022–2026 (2022). Order of the Cabinet of Ministers No. 357. 21.06.2022. Available at: https://nk.gov.az/az/document/6209/ Last accessed: 20.08.2022

Valiyev, A.H. (2020). Evaluation of the potential of agricultural soils in the occupied territories. Agricultural economics, 3 (33), 60–70.

Mexico Clean Energy Report – Executive Summary (2021). NREL, 64. Available at: https://www.nrel.gov/docs/fy22osti/82580.pdf Last accessed: 20.08.2022

Industrial solar power plant and solar farms in Mexico. Available at: https://www.solarenergymexico.com/solar-energy-industrial-use/ Last accessed: 20.08.2022

Solar resource maps of Mexico. Available at: https://solargis.com/maps-and-gis-data/download/mexicot

Mustafayev, F., Kulawczuk, P., Orobello, C. (2022). Renewable Energy Status in Azerbaijan: Solar and Wind Potentials for Future Development. Energies, 15 (2), 401. doi: https://doi.org/10.3390/en15020401

The photovoltaic power potential of Azerbaijan (2021). The World Bank Group Global Solar Atlas. Global Solar Atlas. Available at: http://www.globalsolaratlas.info/ Last accessed: 20.08.2022

A Solar Farm That Doubles As A Tequila Plant Operation (2014). Sidney Brownstone. Fast Company. Available at: https://www.fastcompany.com/3029260/a-solar-farm-that-doubles-as-a-tequila-making-operation Last accessed: 20.08.2022

As part of the «Agrivoltaics» pilot project, various agricultural plants sown on a plot with solar panels. Available at: https://agro.gov.az/az/news/aqrovoltaika-layihesi-cercivesinde-guenes-panelleri-olan-erazide-muextelif-kend-teserruefati-bitkilerinin-sepini-heyata-kecirilib Last accessed: 20.08.2022

Renewable Energy Prospects: Mexico (2015). REmap2030. https://www.irena.org/publications/2015/May/Renewable-Energy-Prospects-Mexico Last accessed: 20.08.2022

Nonhebel, S. (2005). Renewable energy and food supply: will there be enough land? Renewable and Sustainable Energy Reviews, 9 (2), 191–201. doi: https://doi.org/10.1016/j.rser.2004.02.003

Fthenakis, V., Kim, H. C. (2009). Land use and electricity generation: A life-cycle analysis. Renewable and Sustainable Energy Reviews, 13 (6-7), 1465–1474. doi: https://doi.org/10.1016/j.rser.2008.09.017

Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117–132. doi: https://doi.org/10.1016/j.agrformet.2013.04.012

Goetzberger, A., Zastrow, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1 (1), 55–69. doi: https://doi.org/10.1080/01425918208909875

Scognamiglio, A. (2014). Photovoltaic Greenhouses: A Feasible Solution for Islands? Design, Operation Monitoring and Lessons Learned from a Real Case Study. The 6th World Conf. on Photovoltaic Energy Conversion. Kyoto.

Kussul, E., Baydyk, T., Olvera-Tapia, O., Rodríguez Andrade, J. (2019). Comparison of Collocation of Solar Concentrators with Bean Fields in Mexico and Potato Fields in Canada and Micromechanical Equipment for Their Production. Journal of Energy and Power Engineering, 13 (1), 24–31. doi: https://doi.org/10.17265/1934-8975/2019.01.002

Kussul, E., Baydyk, T., Garcia, N., Velasco Herrera, G., Curtidor Lopez, A. V. (2020). Combinations of Solar Concentrators with Agricultural Plants. Journal of Environmental Science and Engineering B, 9 (5), 168–181. doi: https://doi.org/10.17265/2162-5263/2020.05.002

Amaducci, S., Yin, X., Colauzzi, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Applied Energy, 220, 545–561. doi: https://doi.org/10.1016/j.apenergy.2018.03.081

Scilab Enterprises and Consortium Scilab. Digiteo. Scilab: Free and Open Source software for numerical computation (OS, Version 5.4.1) (2012). Available at: http://www.scilab.org Last accessed: 20.08.2022

Yin, X., Van Laar, H. (2005). Crop systems dynamics: an ecophysiological simulation model for genotype-by-environment interactions. Wageningen Academic Pub. doi: https://doi.org/10.3920/978-90-8686-539-0

Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2007). Development of Micro Mirror Solar Concentrator. WSEAS Trans on Power Systems, 8 (2), 188–194.

Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J. M., Bruce, N. (2008). Flat Facet Parabolic Solar Concentrator with Support Cell for One and More Mirrors. WSEAS Trans on Power Systems, 8 (3), 577–586.

Kussul, E., Makeyev, O., Baidyk, T., SanigerBlesa, J., Bruce, N., Lara-Rosano, F. (2011). Adjustment of Solar Concentrator Support Frame. Proc. of the Intern. Conf. on Innovative Technologies. Bratislava, 314–316.

Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N., Lara-Rosano, F. (2011). The Problem of Automation of Solar Concentrator Assembly and Adjustment. International Journal of Advanced Robotic Systems, 8 (4), 150–157. doi: https://doi.org/10.5772/45685

Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N. (2012). Ericsson Heat Engine with Microchannel Recuperator for Solar Concentrator with Flat Mirrors. International Journal of Energy Research, 4, 165–177.

Rodríguez Mendoza, J. L. (2011). Sistema robótico para ajuste de concentradores solares, Tesis para obtener el grado de Maestro en Ingeniería Mecánica-Mecatrónica. UNAM.

Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger Blesa, J. M., Ascanio, G., Bruce, N. (2011). Pat. No. US 8,631,995 B2. Method and Device for Mirrors Position Adjustment of a Solar Concentrator, Notice of Allowance. 02.03.2010 (Mexico), 02.03.2011 (USA).

Kussul, E., Baydyk, T., Saniger Blesa, J. M., Bruce Davidson, N. Ch., Lara Rosano, F., Rodríguez Mendoza, J. L. (2015). Pat. No 334742. Dispositivo de soporte para concentrador solar con espejos planos, 7.02.2012. Instituto Mexicano de Propiedad Industrial. Solicitud MX/a/2012/001598. Fecha de expedición 9.10.2015.

Kussul, E., Baydyk, T., Saniger Blesa, J. M., Bruce Davidson, N. Ch., Lara Rosano, F., Rodríguez Mendoza, J. L. (2015). Pat. No. ES2525276 Dispositivo de soporte para concentrador solar con espejos planos, 21.07.2014, Oficina Española de Patentes y Marca. Solicitud P201490078l. Fecha de la concesión 25.09.2015.

Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, L. (2002). Development of micromachine tool prototypes for microfactories. Journal of Micromechanics and Microengineering, 12 (6), 795–812. doi: https://doi.org/10.1088/0960-1317/12/6/311

Downloads

Published

December 31, 2022

How to Cite

Polishchuk, A., Kulyk, V., Teptya, V., Vishnevskyi, S., Hrytsiuk, Y., Hrytsiuk, I., Komar, V., Lezhniuk, P., Lesko, V., Malogulko, Y., Netrebskyi, V., Sikorska, O., Khomenko, V., Chernysh, O., Barsukov, V., Tverdokhlib, V., Berezovskij, A., Slobodianyk, V., Minska, N., Shevchenko, R., Servatyuk, V., Strelets, V., Lukashenko, V., Kalchenko, Y., Kussul, E., Baydyk, T., Mammadova, M., & Rodriguez Mendoza, J. L. (2022). ENERGY FACILITIES: MANAGEMENT AND DESIGN AND TECHNOLOGICAL INNOVATIONS. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-7319-63-3