ENERGY SYSTEMS AND RESOURCES: OPTIMISATION AND RATIONAL USE
Keywords:
Silicon, magnetic field, doping, crystal lattice defects, solar concentrators, alternative energy, production automation, municipal solid waste, refuse-derived fuel, thermal decomposition, energy efficiency, co-firing, biomass, greenhouse gas emissions, energy balance, convective drying, environmental safety, crystalline structure, phase transformations, computer modelingSynopsis
The monograph "Energy systems and resources: optimisation and rational use" is devoted to topical issues in the field of energy, materials science and sustainable development, including the study of magnetic field effect on silicon microstructure, development of innovative designs of solar concentrators, use of solid domestic waste in the energy balance of Ukraine, as well as the prospects and technologies of co-combustion of coal and biomass at thermal power plants.
In 1 Section "Magnetic treatment of semiconductor silicon", within the framework of research on the influence of magnetic field on the microstructure of silicon grown by the Czochralsky method (Cz-Si), doped with elements Al, Mg, Cu, Fe, Zr, Hf, the influence of these impurities on the interaction energy of silicon atoms in the crystal lattice is considered for the first time. It is found that doping with elements reducing the interaction energy leads to an increase in defects during magnetic treatment for 240 hours, while 720 hours of treatment reduces their number.
In 2 Section "Support frame of solar concentrator with flat triangular mirrors" of the monograph is devoted to the development of improved designs of solar concentrators used in the field of green energy. The research is aimed at reducing production costs and increasing efficiency by reducing the number of metal elements and introducing automated assembly processes. The developed new design with fewer elements contributes to cheaper production and faster assembly process. The prototypes can find wide application in agriculture, organic waste recycling and energy supply of residential buildings within the concept of "green" buildings.
In 3 Section "Technological aspects of producing refuse derived fuel" special attention is paid to the issues of involvement of solid domestic waste in the energy balance of Ukraine by creating alternative solid fuel (RDF - refuse derived fuel). The kinetics of convective drying of RDF of different compositions depending on temperature and speed of the heat carrier is investigated. Drying coefficients, rates of thermal decomposition of organic and mineral substances, as well as calorific value of RDF are determined. The results obtained are the basis for the development of energy-efficient RDF production technologies to reduce dependence on fossil fuels.
The 4 Section "Choice optimization of the type of energy resource for the region" considers the current state and prospects of the energy complex of Ukraine. Based on the analysis of available energy resources, the methodology of selection and justification of priority fuels for regional energy supply is proposed. Environmental aspects of utilisation of traditional resources such as coal, oil, gas and nuclear fuel are considered, as well as the possibilities of transition to alternative energy sources.
The 5 Section "Scientific and technical solutions for implementing biomass combustion at coal-fired TPP in Ukraine" is devoted to the development of technologies for co-combustion of coal and biomass, which is a promising direction for reducing emissions of harmful substances, diversifying fuel sources and improving combustion conditions at thermal power plants. The technologies of biomass combustion and gasification are considered, experimental studies of co-combustion of gas coal and biomass are carried out, thermal calculations of boiler plants using ANSYS FLUENT are performed. Recommendations for implementation of these technologies at Ukrainian TPPs were developed.
Thus, the results presented in the monograph are an important contribution to the solution of urgent problems in the field of sustainable energy, material science and environmental safety. The monograph will be useful for engineers, researchers, designers and specialists working in the field of energy, waste processing and development of "green" technologies.
Chapters
References
Glazov, V. M., Timoshina, G. G., Mikhailova, M. S. (1996). Printcipy legirovaniia kremniia dlia povysheniia ego termostabilnosti. Doklady Akademii Nauk, 347 (3), 352–355.
Taran, Yu. N., Glazov, V. M., Regel, A. R., Kutsova, V. Z., Koltsov, V. B., Timoshina, G. G. et al. (1991). Strukturnye prevrashcheniia pri nagreve monokristallov kremniia Fizika i tekhnika poluprovodnikov, 4 (25), 588–595.
Kol’tsov, V. B., Zubkov, A. M., Timoshina, M. I. (2002). Metodika issledovaniy elektrofizicheskikh svoystv monokristallov kremniya v shirokom intervale temperatur. Fizika poluprovodnikov i polumetallov. Saint-Petersburg.
Kozhitov, L. V., Botavin, V. V., Shepel, P. N., Timoshina, G. G., Timoshina, M. I. (2002). Issledovanie kinetiki raspada kremniia, legirovannogo perekhodnymi i redkozemelnymi elementami. Kremniy-2002. Novosibirsk, 129.
Novokhatskiy, I. A., Kisun’ko, V. Z., Ladyanov, V. I. (1985). Osobennosti proiavlenii razlichnykh tipov strukturnykh prevrashchenii v metallicheskikh rasplavakh. Izvestiya vuzov. Chernaya metallurgiya, 5, 1–9.
Kutsova, V. Z., Nosko, O. A., Timoshina, M. I. (2006). Alloying effect on structure and properties of semiconductor silicon. Proceeding of the International Conference Silicon 2006, 450–459.
Tonkov, E. Yu. (1988). Fazovye prevrashcheniia soedinenii pri vysokom davlenii. Vol. 1, 2. Moscow: Metallurgiya, 463, 356.
Kutsova, V. Z., Nosko, O. A., Timoshina, M. I. (2007). Vliianie legiruiushchikh elementov na strukturu, fazovyi sostav i svoistva poluprovodnikovogo kremniia. Kremniy-2007. Moscow: Gosudarstvennyy tekhnologicheskiy universitet “Moskovskiy institut stali i splavov”, 109.
Glazov, V. M., Zemskov, B. S. (1967). Fiziko-khimicheskie osnovy legirovaniia poluprovodnikov. Moscow: Nauka, 372.
Klevan, O. S., Engh, T. A. (1995). Dissolved impurities and inclusions in FeSi and Si, development of a filter sampler. INFACON 7. Trondheim, 441–451.
Prikhodko, E. V. (1983). Metallokhimiia kompleksnogo legirovaniia. Moscow: Metallurgiya, 184.
Nesterenko, A. M., Uzlov, K. I., Kutsova, V. Z., Nyshchenko, A. N. (1988). Vliianie skorosti okhlazhdeniia na obrazovanie tverdykh rastvorov v sisteme Al-Si. Izvestiya AN SSSR, Metally, 2, 192.
Savitskiy, E. M., Burkhanov, S. S. (1967). Metallovedenie tugoplavkikh metallov i splavov. Moscow: Nauka, 324.
Liubov, B. Ia. (1969). Kineticheskaia teoriia fazovykh prevrashchenii. Moscow: Metallurgiia, 264.
Taran, Yu. N., Kutsova, V. Z., Uzlov, K. I., Falkevich, E. S. (1992). Shearing phase transformations in semiconductors. Proceeding of the International Conference ‘Silicon 92’, 88–95.
Milvidskiy, M. G., Osvenskiy, V. B. (1984). Strukturnye defekty v monokristallakh poluprovodnikov. Moscow: Metallurgiya, 256.
Glazov, V. M., Koltsov, V. B., Kutsova, V. Z., Taran, Yu. N., Timoshina, G. G., Uzlov, K. I., Falkevich, E. S. (1990). Issledovanie elektro-fizicheskikh svoystv kremniya v shirokom intervale temperatur. Elektronnaya tekhnika, 11.
Glazov, V. M., Kurbatov, V. A., Koltsov, V. B. (1985). Issledovanie effekta Kholla antimonidov Ga i In v tverdom i zhidkom sostoyanii. Fizika i tekhnika poluprovodnikov, 19 (4), 662–667.
Kopaev, Iu. V., Meniailenko, V. V., Molotkov, S. N. (1985). Neravnovesnye fazovye perekhody v kovalentnykh poluprovodnikakh pod vozdeistviem lazernogo izlucheniia. Fizika tverdogo tela, 27 (11), 3288–3294.
Landau, L. D., Lifshits, E. M. (1964). Statisticheskaia fizika. Moscow: Nauka, 568.
Tairov, Yu. M., Tsvetkov, V. F. (1980). Rost kristallov i politipizm karbida kremniya. Rost kristallov, 13, 104–111.
Taran, Yu. N., Kutsova, V. Z., Chervonyy, I. F., Shvets, E. Ya., Falkevich, E. S. (2004). Poluprovodnikovyy kremniy: teoriya i tekhnologiya proizvodstva. Zaporozhe: Zaporozhskaya gosudarstvennaya inzhenernaya akademiya, 344.
Alshits, V. I., Darinskaya, E. V., Koldaeva, M. V., Petrzhik, E. A.; Hirth, J. P. (Ed.) (2008). Magnetoplastic Effect in Nonmagnetic Crystals. Dislocations in solids. Amsterdam: Elsevier, 14 (86), 333–437. https://doi.org/10.1016/s1572-4859(07)00006-x
Alshits, V. I., Darinskaya, E. V., Koldaeva, M. V., Petrzhik, E. A. (2003). Magnetoplastic effect: Basic properties and physical mechanisms. Crystallography Reports, 48 (5), 768–795. https://doi.org/10.1134/1.1612598
Golovin, Yu. I. (2004). Magnitoplastichnost tverdykh tel (Obzor). Fizika Tverdogo Tela, 46, 769.
Morgunov, R. B. (2004). Spinovaia mikromekhanika v fizike plastichnosti. Uspekhi fizicheskikh nauk, 174, 131–153.
Buchachenko, A. L. (2013). Mass-Independent Isotope Effects. The Journal of Physical Chemistry B, 117 (8), 2231–2238. https://doi.org/10.1021/jp308727w
Zinenko, V. N., Sorokin, B. P., Turchin, P. P. (1983). Osnovy fiziki tverdogo tela. Moscow: Vysshaia shkola, 330.
Milnes, A. G., Feuch, D. L. (1972). Heterojunctions and Metall-Semiconductor Junctions. New York; London: Academic Press, 418. https://doi.org/10.1016/b978-0-12-498050-1.x5001-6
Zhitinskaya, M. K., Nemov, S. A., Svechnikova, T. E. (1997). Vliyanie neodnorodnostey kristallov Bi2Te3 na poperechnyy effekt Nernsta – Ettingsgauzena. Fizika i tekhnika poluprovodnikov, 31 (4), 441–443.
Chervonyi, I. F., Kutsova, V. Z., Pozhuiev, V. I., Shvets, Ye. Ya., Nosko, O. A., Yehorov, S. H., Voliar, R. M. (2009). Napіvprovіdnikovyi kremnіi: teorіia і tekhnolohіia vyrobnytstva. Zaporіzhzhia, 350.
Vapnik, V. N. (Ed.) (1984). Algoritmy i programma vosstanovleniya zavisimostey. Moscow: Nauka, 816.
Kutsova, V. Z., Nosko, O. A., Tutyk, V. A., Sulay, A. M. (2015). Struktura, mekhanichni ta elektrofizychni vlastyvosti monokrystalichnoho kremniiu pid diieiu postiinoho mahnitnoho polia. Metallurgicheskaya i gornorudnaya promyshlennost, 1, 73–79.
Kutsova, V. Z., Nosko, O. A., Sulay, A. M. (2014). Vliianie legirovaniia i termicheskoi obrabotki na strukturu i svoistva poluprovodnikovogo kremniia. Metallurgicheskaya i gornorudnaya promyshlennost, 6, 65–72.
Kutsova, V. Z., Nosko, O. A., Sulay, A. M. (2015). The structure, mechanical and electrophysical properties of monocrystalline silicon under influence of constant magnetic field. Ukrainian journal of mechanical engineering and materials science, 1 (1), 91–98.
Kutsova, V. Z., Nosko, O. A., Sulai, A. M. (2017). The influence of constant magnetic field on the structure and properties of monocrystalline silicon. Metaloznavstvo ta termichna obrobka metaliv, 2, 32–40.
Bonch-Bruevich, V. P., Kalashnikov, S. G. (1990). Fizika poluprovodnikov. Moscow: Nauka, 685.
Moss, T. S., Burrell, G. J., Ellis, B. (1973). Semiconductor opto-electronics. Butterworth-Heinemann, 441. https://doi.org/10.1016/c2013-0-04197-7
Kutsova, V. Z., Uzlov, K. Y., Khronenko, V. M. (1999). Temperaturnaya zavisimost’ otnositel’nogo udlineniya sverkhchistogo kremniya. Metallurgicheskaya i gornorudnaya promyshlennost, 4, 72–74.
Taran, Iu. N., Kutcova, V. Z., Kovalchuk, M. G., Uzlov, K. I. (1988). Neodnorodnost beta-tverdogo rastvora v siluminakh. Metallovedenie i termicheskaia obrabotka metallov, 9, 33–37
Taran, Yu. N., Kutsova, V. Z. (2002). Fazovye prevrashcheniya i svoystva poluprovodnikovogo kremniya. Vysokochistye metallicheskie i poluprovodnikovye materialy. Kharkovskaya nauchnaya assambleya ISPM-8, 68–73.
Taran, Yu. M., Kutsova, V. Z., Nosko, O. A. (2002). Fazovi peretvorennia ta vlastyvosti napivprovidnykovoho kremniiu. Metaloznavstvo ta obrobka metalіv, 1–2, 59–65.
Taran, Yu. M., Kutsova, V. Z., Nosko, O. A. (2004). Semiconductor–Metal Phase Transitions. Uspehi Fiziki Metallov, 5 (1), 87–166. https://doi.org/10.15407/ufm.05.01.087
Kutsova, V. Z., Stetsenko, A. P., Mazochuk, V. F. (2017). Phase transformations in semiconductor silicon by the influence of magnetic field. Systemni tekhnolohii. Rehionalnyi mizhvuzivskyi zbirnyk naukovykh prats, 5 (112), 103–107.
Oranska, O. I., Gornikov, Yu. I., Gun’ko, V. M., Brichka, A. V. (2022). On the use of model diffraction profiles in the microstructure analysis of nanocrystalline metal oxides based on powder x-ray diffraction data. SURFACE, 14 (29), 148–158. https://doi.org/10.15407/surface.2022.14.148
Makara, V. A., Vasiliev, M. O., Steblenko, L. P., Koplak, O. V., Kuryliuk, A. M., Kobzar, Yu. L., Naumenko, S. M. (2009). Influence of Magnetic Treatment on the Microhardness and Surface Layers Structure of Silicon Crystals. Physics and Chemistry of Solid State, 10 (1), 193–198.
Nosko, O. A. (2006). Osobennosti struktury, fazovye prevrashcheniya legirovannogo kremniya i modifitsirovannykh zaevtekticheskikh siluminov i razrabotka sposobov povysheniya ikh svoystv [PhD dissertation]. Dnepropetrovsk, Ukraine.
Kutsova, V. Z. (1993). Teoriya i praktika upravleniya strukturoy i svoystvami liteynykh splavov na osnove alyuminiya i titana [Doctor's thesis]. Dnepropetrovsk, Ukraine.
Solar Energy for Homes, Businesses, and Farms. Suncatcher Solar. Available at: https://suncatchersolar.com/ Last accessed: 12.01.2024
Kussul, E., Baydyk, T., Mammadova, M., Rodriguez Mendoza, J. L. (2022). Solar concentrator applications in agriculture. Energy facilities: management and design and technological innovations. Kharkiv: PC TECHNOLOGY CENTER, 177–207. https://doi.org/10.15587/978-617-7319-63-3.ch5
Renewable energy solutions. Suncatcher Energy. Available at: https://suncatcherenergy.com/ Last accessed: 12.01.2024
Market Overview (2021). Energy Information Administration (EIA). International Energy Agency (IEA). Available at: https://www.solarflux.co/markets/
Kousksou, T., Bruel, P., Jamil, A., El Rhafiki, T., Zeraouli, Y. (2014). Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells, 120, 59–80. https://doi.org/10.1016/j.solmat.2013.08.015
Kussul, E., Baydyk, T., Curtidor, A., Herrera, G. V. (2023). Modeling a system with solar concentrators and thermal energy storage. Problems of Information Society, 14 (2), 15–23. https://doi.org/10.25045/jpis.v14.i2.02
Harada, K., Yabe, K., Takami, H., Goto, A., Sato, Y., Hayashi, Y. (2023). Two-step approach for quasi-optimization of energy storage and transportation at renewable energy site. Renewable Energy, 211, 846–858. https://doi.org/10.1016/j.renene.2023.04.030
Gil, G. O., Chowdhury, J. I., Balta-Ozkan, N., Hu, Y., Varga, L., Hart, P. (2021). Optimising renewable energy integration in new housing developments with low carbon technologies. Renewable Energy, 169, 527–540. https://doi.org/10.1016/j.renene.2021.01.059
Erdiwansyah, Mahidin, Husin, H., Nasaruddin, Zaki, M., Muhibbuddin. (2021). A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, 6 (1). https://doi.org/10.1186/s41601-021-00181-3
Heard, B. P., Brook, B. W., Wigley, T. M. L., Bradshaw, C. J. A. (2017). Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renewable and Sustainable Energy Reviews, 76, 1122–1133. https://doi.org/10.1016/j.rser.2017.03.114
Sebestyén, V. (2021). Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants. Renewable and Sustainable Energy Reviews, 151 (6), 111626. https://doi.org/10.1016/j.rser.2021.111626
Sahoo, S. K. (2016). Renewable and sustainable energy reviews solar photovoltaic energy progress in India: A review. Renewable and Sustainable Energy Reviews, 59, 927–939. https://doi.org/10.1016/j.rser.2016.01.049
Pranesh, V., Velraj, R., Kumaresan, V. (2022). Experimental investigations on a sensible heat thermal energy storage system towards the design of cascaded latent heat storage system. International Journal of Green Energy, 20 (1), 63–76. https://doi.org/10.1080/15435075.2021.2023879
Tiwari, G.N., Tiwari, A., Shyam (2016). Solar Concentrator. Handbook of Solar Energy. Theory, Analysis and Applications. Springer, 247–291. https://doi.org/10.1007/978-981-10-0807-8_6
Crider, J. (2024). Clean Technika, Solarflux FOCUS Parabolic Dish Concentrator Converts 72% Of Solar Energy Into Usable Heat. Available at: https://cleantechnica.com/2021/08/05/solarflux-focus-parabolic-dish-concentrator-converts-72-of-solar-energy-into-usable-heat/
Baydyk, T., Kussul, E., Bruce, N. (2014). Solar chillers for air conditioning systems. Renewable Energy and Power Quality Journal, 1 (12), 223–227. https://doi.org/10.24084/repqj12.290
Change the World We Live In. Available at: http://www.anzses.org Last accessed: 15.23.2023
Johnston, G. (1998). Focal region measurements of the 20m2 tiled dish at the Australian National University. Solar Energy, 63 (2), 117–124. https://doi.org/10.1016/s0038-092x(98)00041-3
Kussul, E., Baidyk, T., Makeyev, O. et al. (2007). Development of Micro Mirror Solar Concentrator. The 2-nd IASME/WSEAS International Conference on Energy and Environment (EE’07), Portoroz (Portotose), 294–299. Available at: https://www.wseas.org/multimedia/books/2007/energy-and-environment-2007.pdf
Kussul, E., Makeyev, O., Baidyk, T., Blesa, J. S., Bruce, N., Lara-Rosano, F. (2011). The Problem of Automation of Solar Concentrator Assembly and Adjustment. International Journal of Advanced Robotic Systems, 8 (4). https://doi.org/10.5772/45685
Kussul, E., Baydyk, T., Mammadova, M., Rodriguez, J. L. (2022). Development of a model of combination of solar concentrators and agricultural fields. Eastern-European Journal of Enterprise Technologies, 6 (8 (120)), 16–25. https://doi.org/10.15587/1729-4061.2022.269106
Temirlan, E. (2022). Design and study of solar spiral receivers using computer simulation [Master degree thesis].
Luvela, M. (2015). Solar Stirling Engine Efficiency Records Broken by Ripasso Energy. Available at: https://www.greenoptimistic.com/solar-stirling-engine-ripasso/#:~:text=They%20have%20designed%20a%20Solar,the%20solar%20energy%20into%20electricity
Pane, C. (2023). Is this the world’s most efficient solar system? Inhabitat. Available at: https://inhabitat.com/this-solar-power-system-converts-twice-as-much-of-the-suns-energy-as-existing-technology/
Highly Efficient Solar Thermal Energy Technology (2021). Available at: https://www.solarflux.co/product/
ZED Solar Limited (2016). Available at: https://zedsolar.com/
Solar Invictus 53E. Parabolic Tracking Solar Concentrator for Use with a Stirling Engine AEDesign. Available at: https://www.aedesign.com.pk/energySolarInvictus53E.html
El Disco Stirling EuroDish de la Escuela Superior de Ingenieros de Sevilla, https://biblus.us.es/bibing/proyectos/abreproy/4801/fichero/3.+Cap%C3%ADtulo+1.pdf
EuroDish. Available at: https://www.psa.es/es/instalaciones/discos/eurodish.php
Mammadova, M., Baydyk, T., Kussul, E. (2022). Solar concentrators in combination with agricultural fields: Azerbaijan and Mexico. 10. European Conference on Renewable Energy Systems. Istanbul, 342–348.
Baydyk, T., Mammadova, M., Kussul, E., Herrera, G., Curtidor, A. (2022). Assessment of the impact of the combination of crops with solar concentrators on their productivity. Problems of Information Society, 13 (1), 11–18. https://doi.org/10.25045/jpis.v13.i1.02
Hamed, A. M. (2003). Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems. Renewable Energy, 28 (13), 2099–2111. https://doi.org/10.1016/s0960-1481(03)00075-2
Solar Energy Dehumidification Experiment on the Citicorp Center Building (1997). Final Report Prepared for NSF, Energy Laboratory, Massachusetts Institute of Technology, Report No. MIT-EL 77-005, 176.
Solar constant. Available at: https://en.wikipedia.org/wiki/Solar_constant Last accessed: 07.01.2024
Baydyk, T., Mammadova, M., Velasco, G., Kussul, E. (2024). Improvement of solar concentrator structure. Eastern-European Journal of Enterprise Technologies, 2 (8 (128)), 38–45. https://doi.org/10.15587/1729-4061.2024.301538

Downloads
Published
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.