STRUCTURAL MATERIALS: MANUFACTURE, PROPERTIES, CONDITIONS OF USE
Keywords:
aluminum alloys, Al-Mg-Sc system, alloying, chrome, REM, deformation treatment, structure, structural strength, corrosion resistance, damage, vacuum magnetohydrodynamic mixer, continuous ingot casting machine, modification, heat-resistant corrosion-resistant nickel alloys, gas turbine engine blades, directional crystallization, composite castings, cast reinforced structures, iron-carbon alloys, gasification model casting, chromium-nickel alloys, austenite, hardness, wear rate, wear resistance index, deformable aluminum alloys, vacuum magnetohydrodynamic complex, heat-resistant alloy, gas turbine engine, turbine blade, continuously cast aluminum ingots, iron-carbon alloyscasting according to gasifying models, thermal destruction of polystyrene, physical and mechanical properties of cast structures, influence of pressure on metalSynopsis
Collective monograph highlights the results of systematic scientific research devoted to the problems of forming alloys with specified properties for various operating conditions of parts made from them. It also considers the characteristics of alloys of several systems, mechanisms of structure formation, properties and technological features of obtaining such alloys.
Chapter 1 presents the results of studies of the effect of reducing the magnesium content and alloying with scandium, zirconium, manganese, chromium, and SRM on the structure, phase composition, strength, plasticity, and crack resistance, as well as the corrosion potential and current of alloys of the Al-Mg and Al-Mg-Sc systems, obtained using a magnetohydrodynamic foundry. A positive effect of reducing the magnesium content, as well as the replacement of manganese with chromium and doping with lanthanum in alloys of the Al-Mg-Sc system in the cast state and after extrusion, pressing and rolling has been established. It is shown that due to dispersion strengthening by secondary intermetallics of chromium and lanthanum, this alloy in the cast state after homogenization is superior in strength to the well-known alloys of grades 1570 and 1545. After hot and cold rolling, it is not inferior to these alloys in terms of strength and plasticity, but has higher corrosion resistance characteristics. In terms of structural strength, which is comprehensively determined by the characteristics of strength and cyclic crack resistance, such alloys are superior to the well-known Al-Mg-Sc, Al-Mg and Al-Cu-Mg systems.
Chapter 2 presents the results of the development of new highly efficient foundry technologies for the production of cast and composite structural materials and products with high operational characteristics from alloyed and reinforced aluminum, iron-carbon and heat-resistant alloys. In particular, the results of obtaining blades of gas turbine engines (GTE) with a regular directional casting structure using the method of jet gas cooling of molds in a vacuum are presented. Promising technologies for obtaining cast iron and steel reinforced structures based on gasification models by liquid-phase combination of system components have been developed.
Chapter 3 is devoted to determining the patterns of structure formation, phase composition, and tribological properties of heat-resistant chrome-nickel alloys "Nikorin". New solutions to the scientific and practical problem, which consists in increasing the complex of tribological properties and heat resistance of chromium-nickel alloys for modern engineering, are presented. The composition of heat-resistant chrome-nickel alloys, the distribution of alloying elements between phases and structural components have been studied, and the dependence of changes in mechanical properties on the parameters of the structure and phase composition has been established. The results of determining the structure, phase composition, and microhardness of the structural components of the heat-resistant chrome-nickel alloy "Nikorin" after quenching at different temperatures, as well as the tribological properties of chrome-nickel alloys in the cast state, are given.
Chapter 4 presents the results of determining the influence of electromagnetic mixing and alloying on the properties of deformable aluminum alloys, on the phase state and structural stability of heat-resistant corrosion-resistant alloys used for the manufacture of turbine blades of gas turbine engines (GTE). The results of studies on the effect of alloying a heat-resistant nickel-based alloy with tantalum and rhenium on its operational characteristics are presented. It has been proven that under the controlled influence of technological factors and excess pressure (2...6 MPa) on liquid metal and during its crystallization, it is possible to increase the mechanical strength and reduce the porosity of cast iron and steel castings by 15...30%, compared to gravity casting according to models , which are gasified.
The monograph is intended for researchers dealing with issues of synthesis of alloys and the development of technologies for their production based on modern phenomena about the mechanisms of formation of structure and properties for various operational applications.
The monograph is also useful for practitioners – designers, metallurgists, technologists who implement modern solutions in the field of materials science of metals and alloys in the practical conditions of their enterprises and are interested in increasing the competitiveness of their products.
Chapters
References
Ostash, O. P., Fedirko, V. M., Uchanin, V. M., Bychkov, S. A., Moliar, O. H., Semenets, O. I. (2007). Mitsnist i dovhovichnist aviatsiinykh materialiv ta elementiv konstruktsii. Lviv: SPOLOMb, 1068.
Filatov, Yu. A., Yelagin, V. I., Zakharov, V. V. (2000). New Al–Mg–Sc alloys. Materials Science and Engineering: A, 280 (1), 97–101. doi: https://doi.org/10.1016/s0921-5093(99)00673-5
Li, M., Pan, Q., Wang, Y., Shi, Y. (2014). Fatigue crack growth behavior of Al–Mg–Sc alloy. Materials Science and Engineering: A, 598, 350–354. doi: https://doi.org/10.1016/j.msea.2014.01.045
Fernandes, M. T. (2001). Pat. PCT/US00/19559. Aluminium-magnezium-scandium alloys with hafnium. Publ. 22.02.2001.
Polyvoda, S. L., Siryi, O. V., Hordynia, O. M., Puzhailo, L. P. (2017). Pat. No. 119406 UA. Plavylno – lyvarnyi kompleks dlia napivbezperervnoho lyttia zlyvkiv z aliuminiievykh splaviv. MPK B22D 11/14. No. u201703178; declareted: 03.04.2017; published: 25.09.2017, Bul. No. 18. Available at: https://uapatents.com/5-119406-plavilno-livarnijj-kompleks-dlya-napivbezperervnogo-littya-zlivkiv-z-alyuminiehvikh-splaviv.html
Puzhailo, L. P., Siryi, O. V., Polyvoda, S. L. (2015). Pat. No. 108781 UA. Sposib rafinuvannia aliuminiievoho splavu u vakuumi. MPK C22B 21/00, C22B 9/04. No. a201310432. declareted: 27.08.2013; published: 10.06.2015, Bul. No. 11. Available at: https://uapatents.com/4-108781-sposib-rafinuvannya-alyuminiehvogo-splavu-u-vakuumi.html
Ostash, O. P., Polyvoda, S. L., Narivskyi, A. V., Chepil, R. V., Podhurska, V. Ya., Kulyk, V. V. (2020). Vplyv khimichnoho skladu na strukturu ta mekhanichni i koroziini vlastyvosti lytykh splaviv systemy Al-Mg-Sc. Fizyko-khimichna mekhanika materialiv, 56 (4), 122–127.
Gavras, A. G., Chenelle, B. F., Lados, D. A. (2010). Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations. Matéria (Rio de Janeiro), 15 (2), 319–329. doi: https://doi.org/10.1590/s1517-70762010000200033
Avtokratova, E., Sitdikov, O., Kaibyshev, R., Watanabe, Y. (2008). Fatigue-Crack-Growth Behavior of Ultrafine-Grained Al-Mg-Sc Alloy Produced by ECAP. Materials Science Forum, 584–586, 821–826. doi: https://doi.org/10.4028/www.scientific.net/msf.584-586.821
Mann, V. Kh., Krokhin, A. Iu., Alabin, A. N., Khromov, A. P. (2019). Pat. No. 2 683 399 C1 RU. Splav na osnove aliuminiia. Opubl. 23.03.2019; Biul. No. 10.
Derkach, F. A. (1968). Khimiia, Lviv: Lvivsk. universytet, 311.
Ostash, O. P., Kostyk, E. M., Kudriashov, V. G., Andreiko, I. N., Skotnikov, I. A. (1990). Nizkotemperaturnaia tciklicheskaia treshchinostoikost vysokoprochnykh aliuminievykh splavov na stadiiakh zarozhdeniia i rosta treshchiny. Fiziko-khimicheskaia mekhanika materialov, 26 (3), 40–49.
Ostash, O. P., Labur, T. M., Holovatiuk, Yu. V., Vira, V. V., Koval, V. A., Shynkarenko, V. S., Yavorska, M. R. (2019). Konstruktsiina mitsnist zvarnykh ziednan termozmitsnenoho splavu systemy Al-Cu-Mg. Fizyko-khimichna mekhanika materialiv, 4, 81–87.
Ostash, O. P. (2006). Novi pidkhody v mekhanitsi vtomnoho ruinuvannia. Fizykokhimichna mekhanika materialiv, 26 (3), 13–25.
Ostash, O. P., Chepil, R. V., Titov, V. A., Polyvoda, S. L., Voron, M. M., Podhurska, V. Ya. (2021). Mitsnist i tsyklichna trishchynostiikist termodeformovanykh splaviv systemy Al-Mg-Sc. Fizyko-khimichna mekhanika materialiv, 57 (3), 118–125.
Zhemchuzhnikova, D., Mogucheva, A., Kaibyshev, R.; Weiland, H., Rollett, A., Cassada, W. (Eds.) (2012). Mechanical properties of Al-Mg-Sc-Zr alloys at cryogenic and ambient temperatures. Proc. 13th Int. Conf. on Aluminium Alloys (ICAA13). The Minerals, Metals and Materials Society, 879–884. doi: https://doi.org/10.1002/9781118495292.ch131
Mogucheva, A., Babich, E., Kaibyshev, R.; Weiland, H., Rollett, A., Cassada, W. (Eds.) (2012). Microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy subjected to extensive cold rolling. Proc. 13th Int. Conf. on Aluminium Alloys (ICAA13). The Minerals, Metals and Materials Society, 1773–1778. doi: https://doi.org/10.1007/978-3-319-48761-8_265
Ostash, O. P., Kostyk, E. M., Levina, I. N. (1988). Vliianie nizkoi temperatury na zarozhdenie i rost ustalostnykh treshchin v stali 08kp s razlichnym razmerom zerna. Fiziko-khimicheskaia mekhanika materialov, 24 (4), 63–71.
Ivasyshyn, A. D., Vasyliv, B. D. (2001). Vplyv rozmiriv i formy zrazkiv na diahramu shvydkostei rostu vtomnykh trishchyn. Fizyko-khimichna mekhanika materialiv, 37 (6), 119–120.
Holovatiuk, Yu. V., Pokliatskyi, A. H., Ostash, O. P., Labur, T. M. (2018). Pidvyshchennia konstruktsiinoi mitsnosti zvarnykh z’iednan lystiv zi splavu systemy Al-Cu-Mg. Fizyko-khimichna mekhanika materialiv, 54 (3), 112–119.
Nie, Z. R., Fu, I. B., Zon, I. X., Jin, T. N., Yang, I. I., Xu, G. F., et al.; Nie, I. E., Morton, A. J., Muddle, B. C. (Eds.) (2004). Advanced aluminium alloys containing rare-earth erbium. Proc. 9th Int. Conf. on Aluminium Alloys. Brisbane, 197–201.
He, L. Z., Li, X. H., Liu, X. T., Wang, X. J., Zhang, H. T., Cui, J. Z. (2010). Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy. Materials Science and Engineering: A, 527 (29-30), 7510–7518. doi: https://doi.org/10.1016/j.msea.2010.08.077
la Torre, E. A.-D., Pérez-Bustamante, R., Camarillo-Cisneros, J., Gómez-Esparza, C. D., Medrano-Prieto, H. M., Martínez-Sánchez, R. (2013). Mechanical properties of the A356 aluminum alloy modified with La/Ce. Journal of Rare Earths, 31 (8), 811–816. doi: https://doi.org/10.1016/s1002-0721(12)60363-9
Zhang, X., Wang, Z. H., Zhou, Z. H., Xu, J. M., Zhong, Z. J., Yuan, H. L., Wang, G. W. (2015). Effects of Rare Earth on Microstructure and Mechanical Properties of Al-3.2Mg Alloy. Materials Science Forum, 817, 192–197. doi: https://doi.org/10.4028/www.scientific.net/msf.817.192
Pozdniakov, A. V., Yarasu, V., Barkov, R. Yu., Yakovtseva, O. A., Makhov, S. V., Napalkov, V. I. (2017). Microstructure and mechanical properties of novel Al-Mg-Mn-Zr-Sc-Er alloy. Materials Letters, 202, 116–119. doi: https://doi.org/10.1016/j.matlet.2017.05.053
Ibrokhimov, S. Zh. (2018). Struktura i svoistva splava AMg4, legirovannogo redkozemelnymi metallami (Sc, Y, La, Pr, Nd). Dushanbe.
Ostash, O. P., Polivoda, S. L., Chepіl, R. V., Tіtov, V. A., Gogaev, K. O., Kulik, V. V. et al. (2021). Vpliv rіdkіsnozemelnikh metalіv na strukturu і vlastivostі litikh ta deformovanikh splavіv sistemi Al-Mg-Cr-Sc-Zr. Fіziko-khіmіchna mekhanіka materіalіv, 57 (6), 120–127.
Estrin, Y., Vinogradov, A. (2013). Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Materialia, 61 (3), 782–817. doi: https://doi.org/10.1016/j.actamat.2012.10.038
Zhemchuzhnikova, V. A. (2016). Vliianie deformatcii na strukturu i mekhanicheskie svoistva Al-Mg- Sc-Zr splava. Belgorod.
Ren, L., Gu, H., Wang, W., Wang, S., Li, C., Wang, Z., Zhai, Y., Ma, P. (2020). The Microstructure and Properties of an Al-Mg-0.3Sc Alloy Deposited by Wire Arc Additive Manufacturing. Metals, 10 (3), 320. doi: https://doi.org/10.3390/met10030320
Harada, Y., Dunand, D. C. (2009). Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics, 17 (1-2), 17–24. doi: https://doi.org/10.1016/j.intermet.2008.09.002
Fang, H. C., Shang, P. J., Huang, L. P., Chen, K. H., Liu, G., Xiong, X. (2012). Precipitates and precipitation behavior in Al–Zr–Yb–Cr alloys. Materials Letters, 75, 192–195. doi: https://doi.org/10.1016/j.matlet.2012.02.013
Iakiviuk, O. V. (2018). Razrabotka tekhnologii polucheniia dlinnomernykh deformirovannykh polufabrikatov iz splavov sistemy Al-Mg, legirovannykh skandiem, i issledovanie ikh svoistv. Krasnoiarsk.
Bethencourt, M., Botana, F. J., Calvino, J. J., Marcos, M., RodrÍguez-Chacón, M. A. (1998). Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review. Corrosion Science, 40 (11), 1803–1819. doi: https://doi.org/10.1016/s0010-938x(98)00077-8
Cavaliere, P. (2009). Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. International Journal of Fatigue, 31 (10), 1476–1489. doi: https://doi.org/10.1016/j.ijfatigue.2009.05.004
Titov, A. V., Balushok, K. B., Ostash, O. P., Titov, V. A., Korieva, V. O., Polyvoda, S. L., Chepil, R. V. (2022). Presuvannia napivfabrykativ zi splaviv systemy Al-Mg-Sc v izotermichnykh umovakh. Fizyko-khimichna mekhanika materialiv, 58 (5), 120–127.
Design Environment for FORMing. Available at: https://www.deform.com/products/deform-3d/
Kolmohorov, V. L. (1970). Napriazhenyia, deformatsyy, razrushenye. Moscow: Metallurhyia, 229.
Bohatov, A. A., Myzhyrytskyi, O. Y., Smyrnov, S. V. (1984). Resurs plastychnosty metallov pry obrabotke davlenyem. Moscow: Metallurhyia, 144.
Mykhalevych, V. M., Dobraniuk, Yu. V., Kraievskyi, V. O. (2018). Porivnialne doslidzhennia modelei hranychnykh plastychnykh deformatsii. Visnyk mashynobuduvannia ta transportu, 2 (8), 56–64.
Shao, Y., Peng, W., Cao, F., Oleksandr, M., Titov, V. (2022). Effect of process parameters on AA6061/Q345 bimetal composite for hot stamping. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236 (6), 2515–2525. doi: https://doi.org/10.1177/09544089221096204
Yu, Z., Peng, W., Zhang, X., Oleksandr, M., Titov, V. (2022). Evolution of microstructure of aluminum alloy hollow shaft in cross wedge rolling without mandrel. Journal of Central South University, 29 (3), 807–820. doi: https://doi.org/10.1007/s11771-022-4950-8
Puzhailo, L. P., Polyvoda, S. L., Siryi, O. V., Hordynia, O. M. (2019). Pat. No. 131179 UA. Sposib pryhotuvannia aliuminiievykh lihatur u mahnitohidrodynamichnykh ustanovkakh. MPK C22B 21/00. declareted: 15.06.2018; published: 25.09.2008, Bul. No. 1. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=254473
Polyvoda, S. L., Siryi, O. V., Puzhailo, L. P. (2013). Pat. No. 101343 UA. Method for producing high-strength aluminum wrought alloys containing zinc. MPK C22C 21/06, C22C 21/02, C22B 9/04, C22B 21/00. No. a201007359. declareted: 26.12.2011; published: 25.03.2013, Bul. No. 6. Available at: https://uapatents.com/5-101343-sposib-prigotuvannya-visokomicnikh-alyuminiehvikh-deformivnikh-splaviv-z-vmistom-cinku.html
Polyvoda, S. L., Polyvoda, M. O., Hordynia, O. M., Siryi, O. V., Puzhailo, L. P. (2017). Pat. No. 115590 UA. Sposib vyznachennia vmistu vodniu u ridkomu metali. MPK C22B 21/00, G01N 33/20, G01N 27/61, G01N 27/74. No. a201511064. declareted: 12.11.2015; published: 27.11.2017, Bul. No. 22. Available at: https://uapatents.com/6-115590-sposib-viznachennya-vmistu-vodnyu-u-ridkikh-alyuminiehvikh-splavakh.html
Naidek, V. L., Narivskyi, A. V., Lenda, Yu. P., Hanzha, M. S. (2006). Pat. No. 75166 UA. Vakuumplazmova ustanovka dlia obrobky metalichnykh rozplaviv u vanni. MPK C22B 9/00, H05H 1/26, C21C 7/072, C21C 7/10. No. 2004010693. declareted: 30.01.2004; published: 15.03.2006, Bul. No. 3. Available at: https://uapatents.com/3-75166-vakuumplazmova-ustanovka-dlya-obrobki-metalichnikh-rozplaviv-u-vanni.html
Puzhailo, L. P., Polyvoda, S. L., Siryi, O. V., Hordynia, O. M. (2019). Pat. No. 131180 UA. Sposib napivbezperervnoho lyttia zlyvkiv z aliuminiievykh splaviv, yaki mistiat lehkookysliuvani komponenty. MPK B22D 11/14, B22D 21/04. No. u201806809. declareted: 15.06.2018; published: 10.01.2019, Bul. No. 1. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=254474
Puzhailo, L. P., Gavriliuk, V. P., Seryi, A. V., Polivoda, S. L., Gordynia, A. N. (2012). Modelirovanie magnitogidrodinamicheskikh protsessov elektromagnitnogo peremeshivaniia aliuminievogo splava v kristallizatore i teplovoi nasadke pri polunepreryvnom lite slitkov. Protsessy litia, 5, 54–60.
Mitin, B. S., Petuhov, S. A., Puzhajlo, L. P., Serov, M. M., Frolov, V. D., Popel, P. S. (1995). Svojstva splavov Al-Cr-Zr, poluchennh jekstrakciej rasplava v jelektromagnitnom pole. Fizika i himija obrabotki materialov, 1, 110–116.
Polyvoda, S. L., Siryi, O. V., Hordynia, O. M. (2020). Pat. No. 140659 UA. Ustanovka dlia otrymannia volokon z aliuminiievykh splaviv ekstrahuvanniam rozplavu. MPK B01D 11/00, B22D 11/06, B22D 11/16. No. u201907978. declareted: 12.07.2019; published: 10.03.2020, Bul. No. 5. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=266530
Narivskyi, A. V., Moiseiev, Yu. V., Polyvoda, S. L., Siryi, O. V., Hordynia, O. M. (2020). Pat. No. 144020 UA. Sposib obroblennia splaviv u mahnitodynamichnii ustanovtsi. MPK C22B 9/05, C21C 1/00, B22D 1/00. No. u202001893. declareted: 17.03.2020; published: 25.08.2020, Bul. No. 16. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=270921
Narivskyi, A. V., Shyriaieva, I. V., Hlike, A. P., Fedorov, V. V., Naidek, V. L. (2012). Pat. No. 98903 UA. Sposib rafinuvannia splaviv vid domishok. MPK C21C 7/10, C22B 9/04, C21C 7/072. No. a201108029. declareted: 25.06.2011; published: 25.06.2012, Bul. No. 12. Available at: https://uapatents.com/6-98903-sposib-rafinuvannya-splaviv-vid-domishok.html
Dubodielov, V. I., Naidek, V. L., Narivskyi, A. V., Fedorov, V. V., Fiksen, V. M., Slazhniev, M. A. et al. (2014). Pat. No. 107390 UA. Sposib plazmovoho rafinuvannia splaviv u mahnitodynamichnii ustanovtsi. MPK C22B 9/04, C22B 9/05, C21C 7/072, C21C 1/00. No. a201302218. declareted: 22.02.2013; published: 25.12.2014, Bul. No. 24. Available at: https://uapatents.com/6-107390-sposib-plazmovogo-rafinuvannya-splaviv-v-magnitodinamichnijj-ustanovci.html
Fikssen, V. M., Dubodielov, V. I., Naidek, V. L., Sychevskyi, A. A., Tunyk, V. O., Narivskyi, A. V., Hanzha, M. S. (2017). Pat. No. 113663. Sposib plazmovoi obrobky splaviv v mahnitodynamichnii ustanovtsi. MPK C22B 9/05, C21C 1/00, C21C 7/072, C22B 9/04, B22D 1/00. No. a201502163. declareted: 12.03.2015; published: 27.02.2017, Bul. No. 4. Available at: https://uapatents.com/6-113663-sposib-plazmovo-obrobki-splaviv-v-magnitodinamichnijj-ustanovci.html
Narivskyi, A. V., Dubodielov, V. I., Moiseiev, Yu. V., Hanzha, M. S., Narivskyi, O. A., Davydenko, V. M. et al. (2019). Pat. No. 136171 UA. Sposib plazmovoi obrobky splaviv u mahnitodynamichnii ustanovtsi. MPK C22B 9/05, C21C 7/072, B22D 1/00. No. u201901368. declareted: 11.02.2019; published: 12.08.2019, Bul. No. 15. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=260764
Dubodielov, V. I., Narivskyi, A. V., Naidek, V. L., Naumovets, A. H., Seredenko, V. O., Fikssen, V. M. et al. (2020). Pat. No. 121619 UA. Sposib oderzhannia lytykh kompozytsiinykh materialiv na metalevii osnovi. MPK B22D 19/14, B22D 27/20, B22D 27/02, C22F 3/00, C22C 1/03, C22B 9/05, C22C 1/00. No. a201810552. declareted: 25.10.2018; published: 25.06.2020, Bul. No. 12. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=269065
Naidek, V. L., Narivskyi, A. V., Hanzha, M. S., Bilenkyi, D. M., Sychevskyi, A. A. (2004). Pat. No. 69091 A UA. Sposib obrobky ridkoho metalu. MPK: C22B 9/04, C22B 9/05. No. 20031210928. declareted: 02.12.2003; published: 16.08.2004, Bul. No. 8. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=77511
Naidek, V. L., Narivskyi, A. V., Kurpas, V. I., Bilenkyi, D. M., Hanzha, M. S. (2006). Pat. No. 75829 UA. Sposib vakuum-plazmovoi obrobky kolorovykh splaviv. MPK C22B 9/00, H05H 1/26. No. 20041109751. declareted: 26.11.2004; published: 15.05.2006, Bul. No. 5. Available at: https://uapatents.com/3-75829-sposib-vakuum-plazmovo-obrobki-kolorovikh-splaviv.html
Naidek, V. L., Narivskyi, A. V., Dubodielov, V. I., Smyrnov, O. M., Yakobshe, R. Ya., Kurpas, V. I., et al. (2008). Pat. No. 81701 UA. Sposib obrobky ridkoho metalu v promizhnomu kovshi. MPK C22B 9/04, C22B 9/00, C22B 9/05, C22B 9/22, H05H 1/26. No. a200603972. declareted: 10.04.2006; published: 25.01.2008, Bul. No. 2. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=11291
Naidek, V. L., Narivskyi, A. V., Bilenkyi, D. M., Hanzha, M. S., Piontkovska, N. S., Sychevskyi, A. A. et al. (2009). Pat. No. 85988 UA. Sposib vakuumno-plazmovoi obrobky rozplavu metalu. MPK C22B 9/04, C22B 9/05. No. a200806948. declareted: 19.05.2008; published: 10.03.2009, Bul. No. 5. Available at: https://uapatents.com/3-85988-sposib-vakuumno-plazmovo-obrobki-rozplavu-metalu.html
Balitskii, A. I., Kvasnytska, Y. H., Ivaskevich, L. M., Mialnitsa, H. P. (2018). Hydrogen and corrosion resistance of Ni-Co superalloys for gas turbine engines blades. Archives of Materials Science and Engineering, 91 (1), 5–14. doi: https://doi.org/10.5604/01.3001.0012.1380
Balitskii, A. I., Kvasnytska, Y. H., Ivaskevych, L. M., Kvasnytska, K. H., Balitskii, O. A., Shalevska, I. A. et al. (2023). Hydrogen and Corrosion Resistance of Nickel Superalloys for Gas Turbines, Engines Cooled Blades. Energies, 16 (3), 1154. doi: https://doi.org/10.3390/en16031154
Ivaskevich, L., Balitskii, A., Kvasnytska, I., Kvasnytska, K., Myalnitsa, H. (2022). Thermal Stability, Cyclic Durability and Hydrogen Resistance of Cast Nickel-Cobalt Alloys for Gas Turbine Blades. Advances in Mechanical and Power Engineering, 147–155. doi: https://doi.org/10.1007/978-3-031-18487-1_15
Kvasnytska, Yu. H., Ivaskevych, L. М., Balytskyi, О. І., Maksyuta, І. І., Myalnitsa, H. P. (2020). High-Temperature Salt Corrosion of a Heat-Resistant Nickel Alloy. Materials Science, 56 (3), 432–440. doi: https://doi.org/10.1007/s11003-020-00447-5
Kuznetsov, V. P., Lesnikov, V. P., Konakova, I. P., Popov, N. A., Kvasnitskaya, Yu. G. (2015). Structural and Phase Transformations in Single-Crystal Rhenium- and Ruthenium-Alloyed Nickel Alloy Under Testing For Long-Term Strength. Metal Science and Heat Treatment, 57 (7–8), 503–506. doi: https://doi.org/10.1007/s11041-015-9912-4
Hlotka, А. А., Haiduk, S. V. (2020). Prediction of the Thermodynamic Processes of Phase Separation in Single-Crystal Refractory Alloys Based on Nickel. Materials Science, 55 (6), 878–883. doi: https://doi.org/10.1007/s11003-020-00382-5
Paton, B. E. (Ed.) (1987). Zharoprochnost liteinykh nikelevykh splavov i zashchita ikh ot okisleniia. Kyiv: Nauk. Dumka, 256.
Fu, H., Geng, X. (2001). High rate directional solidification and its application in single crystal superalloys. Science and Technology of Advanced Materials, 2, 197–204. doi: https://iopscience.iop.org/article/10.1016/S1468-6996(01)00049-3/pdf
Wu, X., Makineni, S. K., Liebscher, C. H., Dehm, G., Rezaei Mianroodi, J., Shanthraj, P. et al. (2020). Unveiling the Re effect in Ni-based single crystal superalloys. Nature Communications, 11 (1). doi: https://doi.org/10.1038/s41467-019-14062-9
Konter, M., Kats, E., Hofmann, N. (2000). A Novel Casting Process for Single Crystal Gas Turbine Components. Superalloys, 189–200. Available at: https://www.tms.org//Superalloys/10.7449/2000/Superalloys_2000_189_200.pdf
Hu, S., Yang, W., Li, Z., Xu, H., Huang, T., Zhang, J. et al. (2021). Formation mechanisms and control method for stray grains at melt-back region of Ni-based single crystal seed. Progress in Natural Science: Materials International, 31 (4), 624–632. doi: https://doi.org/10.1016/j.pnsc.2021.07.004
Specification Z88YF1-S2 for Supplying Remelting Stocks of Alloy CM-88Y, Technical specifications of “Zorya”-“Mashproekt” GTRPC. (2016). Mykolaiv: National Technical University “KhPI”.
Lapin, J., Gebura, M., Pelachova, T., Nazmy, M. (2008). Coarsening kinetics of cuboidal gamma prime precipitates in single crystal nickel base superalloy CMSX-4. Kovove Mater, 46 (6), 313–322. Available at: http://www.kovmat.sav.sk/issue.php?rr=46&cc=6
Kvasnytska, Y. H., Ivaskevich, L. M., Balitskii, A. I., Kvasnytska, K. H., Mialnitsa, H. P. (2022). Structural and Mechanical Properties of the Nickel Alloy of Gas-Turbine Engine Blades. Materials Science, 57 (5), 688–694. doi: https://doi.org/10.1007/s11003-022-00596-9
Shalevska, I. (2020). Kompleks tekhnolohichnykh protsesiv ekolohichno bezpechnoho vyrobnytstva vylyvkiv z prohnozovanymy funktsionalnymy vlastyvostiamy za modeliamy, shcho hazyfikuiutsia. Kyiv: Fizyko-tekhnolohichnyi instytut metaliv ta splaviv Natsionalnoi akademii nauk Ukrainy, 416.
Chung, D. D. L. (2010). Composite Materials. Science and Applications. Springer, 358. doi: https://doi.org/10.1007/978-3-030-28983-6
Lysenko, T. V., Yasiukov, V. V., Prokopovych, Y. V. (2019). Kontseptsyy upravlenyia formoobrazovanyem otlyvok. Odessa: Ekolohyia, 272.
Shinsky, O., Shalevska, I., Kaliuzhnyi, P., Shinsky, V., Lysenko, T., Shevchuk, T. et al. (2018). Principles of construction and identification of a multilevel system for monitoring parameters of technological cycle of casting. Eastern-European Journal of Enterprise Technologies, 5 (1 (95)), 25–32. doi: https://doi.org/10.15587/1729-4061.2018.141303
Dulska, A., Studnicki, A., Szajnar, J. (2017). Reinforcing cast iron with composite insert. Archives of Metallurgy and Materials. 62 (1), 355–357. doi: https://doi.org/10.1515/amm-2017-0054
Anikeev, A. N., Chumanov, I. V. (2018). Microstructure and Hardness of a Dispersion-Reinforced Casting. Russian Metallurgy (Metally), 12, 1161–1164. doi: https://doi.org/10.1134/S0036029518120030
Nebozhak, I. A., Sumenkova, V. V., Tkachuk, I. V., Shynskyi, O. Y. (2001). Osoblyvosti strukturoutvorennia SCh20, modyfikovanoho FS75 u porozhnyni lyvarnoi formy za HAMOLYV - protsesom. Metaloznavstvo ta obrobka metaliv, 4, 43–49.
Włodarczyk-Fligier, A., Dobrzański, L. A., Kremzer, M., Adamiak, M. (2008). Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles. Journal of Achievements in Materials and Manufacturing Engineering, 1 (27), 99–102. Available at: http://jamme.acmsse.h2.pl/papers_vol27_1/27123.pdf
Shalevska, I., Kaliuzhnyi, P. (2019). Physical modeling of the hydrodynamic processes of casting molds pouring filled with a locally oriented reinforcing phase. Technology Transfer: Fundamental Principles and Innovative Technical Solutions, 55–57. doi: https://doi.org/10.21303/2585-6847.2019.001042
Shalevska, I. A., Musbah. J. I. (2020). Obtaining Cast Reinforced Structures by Liquid Phase Combination of System Components. Casting processes, 1 (139), 69–75. doi: https://doi.org/10.15407/plit2020.01.069
Shalevskaya, I. A. (2019). Research of heat-exchange processes in a casting form with reinforcing phase. Foundry Production and Metallurgy, 3, 54–59. doi: https://doi.org/10.21122/1683-6065-2019-3-54-59
Shinsky, І., Shalevska, I., Musbah, J. (2015). Efficiency of influence of a metal macroreinforcing phase on process of solidification of large-sized castings. TEKA. Edition of Lublin University of technology, 15 (2), 51–59.
Rozhkova, E. V., Vatkovskaia, I. E. (1985). Prokalivaemost iznosostoikikh chugunov. Liteinoe proizvodstvo, 1, 33–35.
Stepina, A. I., Stupitckii, A. M., Kleis, I. R. (1977). Vliianie struktury na iznosostoikost chugunov. Liteinoe proizvodstvo, 9, 26–36.
Romanov, O. M., Rozhkova, E. V., Kozlov, L. Ia., Shveikhman, A. O. (1981). Iznosostoikie lopatki drobemetnykh apparatov. Liteinoe proizvodstvo, 6, 26–30.
Leshchenko, A. D., Kutuzov, A. D., Lunev, V. V. (1988). Sostav khromistogo chuguna s zadannymi svoistvami. Liteinoe proizvodstvo, 6, 8–12.
Komarov, O. S., Susina, O. A., Urbanovich, N. I. et al. (1997). Vliianie struktury metallicheskoi osnovy vysokokhromistykh splavov na ego tribotekhnicheskie kharakteristiki. Lite i metallurgiia. Inf. Biulleten, 7–9, 22–24.
Shebatinov, M. P., Romanov, L. I., Prokhorov, M. I. et al. (1984). Issledovanie uslovii iznosostoikosti chuguna. Trudy Gorkovskogo instituta vodnogo transporta, 206, 99–109.
Slabodinskii, I. N., Kirievskii, B. A., Smoliakov, L. G. (1972). Issledovanie poverkhnostnykh sloev vysokokhromistykh chugunov pri gidroabrazivnom iznose. Litye iznosostoikie materialy. Sbornik IPL AN USSR. Kiev, 21–26.
Frost, R. H., Maewski, T., Krouss, G. (1984). Impact fracture behavior of high-chromium-molibdenium white cast iron. Transactions of the American Foundrymen's Society, 94 (11–15), 293–322.
Iurasov, S. A., Kozlov, L. Ia., Rozhkova, E. V. et al. (1984). Vliianie struktury metallicheskoi osnovy na prochnost khromistykh splavov. MiTOM, 7, 18–20.
Bunin, K. P., Taran, Iu. N. (1972). Stroenie chuguna. Moscow: Metallurgiia, 160.
Grigorovich, V. K. (1970). Elektronnoe stroenie i termodinamika splavov zheleza. Moscow: Nauka, 213.
Samsonov, G. V., Vinnitckii, I. M. (1976). Tugoplavkie soedineniia. Moscow: Metallurgiia, 560.
Shank, F. A. (1973). Struktury dvoinykh splavov. Moscow: Metallurgiia, 760.
Yukawa, N., Hida, M., Imura, T., Mizuno, Y., Kawamura, M. (1972). Structure of chromium-rich Cr-Ni, Cr-Fe, Cr-Co, and Cr-Ni-Fe alloy particles made by evaporation in argon. Metallurgical Transactions, 3 (4), 887–895. doi: https://doi.org/10.1007/bf02647663
Girshovich, N. G., Ioffe, A. Ia. (1958). Zharostoikie chuguny. Leningrad: Mashprom, 20.
Ulianin, E. A., Svistunova, T. V., Levin, F. L. (1986). Korrozionnostoikie stali i splavy na osnove zheleza i nikelia. Moscow: Metallurgiia, 262.
Issledovaniia po zharoprochnym splavam. Vol. 2 (1957). Izd. AN SSSR, 13–19.
Vintaikin, E. Z., Urushadze, G. G. (1969). Obrazovanie dalnego poryadka v splavah nikel-hrom. DAN SSSR, 184 (3), 589–592.
Vintaikin, E. Z., Urushadze, G. G. (1970). Neytronno-difraktsionnoe issledovanie uporyadocheniya atomov v splavah nikelya i hroma. Ukrainskiy biohimicheskiy zhurnal, 15, 133–135.
Vintaikin, E. Z., Urushadze, G. G. (1969). Uporiadochenie splavov nikel-khrom. Fizika Metallov i Metallovedenie, 27, 895–903.
Zakharov, M. V., Zakharov, A. M. (1972). Zharoprochnye splavy. Moscow: Metallurgiia, 384.
Sabol, G. P., Stickler, R. (1969). Microstructure of Nickel‐Based Superalloys. Physica Status Solidi, 35 (1), 11–52. doi: https://doi.org/10.1002/pssb.19690350102
Khimushin, F. F. (1969). Zharoprochnye stali i splavy. Moscow: Metallurgiia, 749.
Svistunova, T. V., Runova, Z. K., Kireeva, T. S., Tarasenko, V. A., Kostenko, A. G. (1976). Korrozionnaya stoykost nikelhromistyih splavov v plavikovo-azotnokislotnyih travilnyih rastvorah. Stal, 9, 851–853.
Svistunova, T. V., Kireeva, T. S., Runova, Z. K. (1983). Struktura i korrozionnoe povedenie khromonikelevykh splavov tipa KhN60 v azotnoftoridnom rastvore. Zashchita metallov, 19 (2), 212–219.
Bannykh, O. A. (1994). Zharoprochnye i zharostoikie stali i splavy na nikelevoi osnove. Moscow: Nauka, 245.
Melnikova, N. A., Pakchanin, L. M., Petrenko, P. V. (1974). Issledovanie vozvrata ehlektrosoprotivleniya v splavakh nikel-khrom. Fizika Metallov i Metallovedenie, 37 (6), 1159–1163.
Struktura i svoistva zharoprochnykh metallicheskikh materialov (1967). Izd. Nauka, 349.
Pridantcev, M. V. (1973). Zharoprochnye stareiushchie splavy. Moscow: Metallurgiia, 183.
Betteridzh, Tc. (1961). Zharoprochnye splavy tipa nimonik. Moscow: Metallurgiia, 381.
Lanskaia, K. A. (1969). Zharoprochnye stali. Moscow: Metallurgiia, 245.
Khimushin, F. F. (1962). Legirovanie, termicheskaia obrabotka i svoistva zharoprochnykh stalei i splavov. Moscow: Oborongiz, 320.
Salli, A. (1953). Polzuchest metallov i zharoprochnykh svoistv. Moscow: Oborongiz, 290.
Khimushin, F. F. (1958). Zharoprochnye gazoturbinnye stali i splavy. Sovremennye splavy i ikh termicheskaia obrabotka. MDNTP im. F. E. Dzerzhinskogo. Mashgiz, 348.
Rakhmanov, S. R. (2007). Dinamika strezhnevoi sistemy mekhanizma uderzhaniia opravki proshivnogo stana truboprokatnogo agregata. Sovremennye napravleniia proizvodstva svarnykh i besshovnykh trub iz chernykh i tcvetnykh metallov. Dnepropetrovsk, 45–51.
Danchenko, V. N., Kolikov, A. P., Romantcev, B. A., Samusev, S. V. (2002). Tekhnologiia trubnogo proizvodstva. Moscow: Intermet – Inzheniring, 640.
Grudnev, A. P., Mashkin, L. F., Khanin, M. I. (1994). Tekhnologiia prokatnogo proizvodstva. Moscow: Metallurgiia, 650.
Saltykov, S. A. (1970). Stereometricheskaia metallografiia. Moscow: Metallurgiia, 375.
Wilson, F. R., Harding, R. A. (1984). The X-Ray Study of ADI. BCIRA Journal, 318–331.
Mirkin, L. I. (1979). Rentgenostrukturnyi kontrol mashinostroitelnykh materialov. Moscow: Mashinostroenie, 250.
Gorelik, S. S., Rastorguev, A. N., Skakov, Iu. A. (1963). Rentgenograficheskii i elektronno-graficheskii analiz metallov. Moscow: Metallurgiia, 218.
Kalinushkin, E. P. (2007). Peritekticheskaia kristallizatciia legirovannykh splavov na osnove zheleza. Dnepropetrovsk: Porogi, 172.
Westbrook, J. H., Conrad, H. (Eds.) (1973). The Science of Hardness Testing and its Research Application. American Society for metals. Ohio: Metal Park, 520.
Kutcova, V. Z., Kovzel, M. A., Nesterenko, A. M., Zhivotovich, A. V. (2008). Struktura i fazovyi sostav zharoprochnogo khromonikelevogo splava «Nikorin». Stroitelstvo, materialovedenie, mashinostroenie, 45 (3), 44–51.
Kutcova, V. Z., Kovzel, M. A., Zhivotovich, A. V. (2008). Issledovanie struktury, fazovogo sostava i svoistv zharoprochnykh khromonikelevykh splavov v litom sostoianii. Oborudovanie i tekhnologii termicheskoi obrabotki metallov i splavov (OTTOM – 9), 1, 23–28.
Kutcova, V. Z., Zhivotovich, A. V., Kovzel, M. A., Kravchenko, A. V. (2008). Struktura, fazovyi sostav i fazovyi rentgenospektralnyi analiz zharoprochnogo khromonikelevogo splava «Nikorin». Metallofizika i noveishie tekhnologii, 30, 235–243.
Kutsova, V. Z., Kovzel, M. A., Grebeneva, A. V., Myrgorodskaya, A. S. (2012). Structure, phases and alloying elements distribution of Nikorim (high-temperature strength Ni-Cr alloy) in its cast form. Metallurgical and Mining Industry, 4 (1), 40–44.
Kutsova, V. Z., Kovzel, M. A., Velichko, О. О., Stradomski, Z. (2013). Structure, phases and alloying elements distribution of Nikorim (high-temperature strength Ni-Cr alloy) in its cast form. Metallurgy 2013. New technologies and achievements in metallurgy, material engineering and production engineering. Czestochowa, 31 (2), 99–105.
Berg, L. G. (1961). Vedenie v termografiiu. Moscow: Izd. AN SSSR, 368.
Piloian, G. O. (1984). Vvedenie v teoriiu termicheskogo analiza. Moscow: Izd. AN SSSR, 257.
Miroshnichenko, I. S. (1982). Zakalka iz zhidkogo sostoianiia. Moscow: Metallurgiia, 168.
Lanskaia, K. A., Kobozaeva, Z. T. (1970). Spetcialnye stali i splavy. Moscow: Metallurgiia.
Petrushin, N. V., Logunov, A. V., Dolzhanskii, Iu. M. (1981). Prognozirovanie zakonomernostei izmeneniia svoistv v zavisimosti ot legirovaniia Cr, Co, Nb, W. Metallovedenie i termicheskaia obrabotka metallov, 5, 10–15.
Kutsova, V. Z., Kovzel, M. A., Hrebeneva, A. V. (2011). Zakonomernosty formyrovanyia strukturi khromonykelevoho splava «Nikorim». Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni. Zaporizhzhia, 1, 59–66.
Kutsova, V. Z., Kovzel, M. A., Hrebenieva, A. V. (2012). Struktura, fazovyi sklad khromonikelevoho splavu «Nikorim» u termoobroblenomu stani. Metaloznavstvo ta termichna obrobka metaliv, 1, 31–34.
Bunin, K. P., Malinochka, Ia. N., Taran, Iu. N. (1969). Osnovy metallografii chuguna. Moscow: Metallurgiia, 416.
Bobro, Iu. G., Tikhonovich, V. I., Bobro, A. Iu. (1990). Upravlenie strukturoi metallicheskoi matritcy iznosostoikikh chugunov. Protcessy litia, 1, 31–35.
Diagrammy sostoianiia metallicheskikh sistem tematicheskii spravochnik (1978). Moscow, 308.
Kutcova, V. Z., Kovzel, M. A., Grebeneva, A. V., Gorna, І. D., Velichko, O. O. (2012). Vpliv іzotermіchnogo gartuvannia na mekhanіchnі vlastivostі visoko khromistikh splavіv. Metallurgicheskaia i gornorudnaia promyshlennost, 7, 255–261.
Kutcova, V. Z., Kovzel, M. A., Velichko, O. A., Stradomski, Z. (2013). Iznosostoikost vysokokhromistykh splavov v shirokom intervale temperatur. Metallurgy 2013. New technologies and achievements in metallurgy, material engineering and production engineering. Czestochowa, 31 (2), 81–87.
Kіndrachuk, M. V., Kutcova, V. Z., Kovzel, M. A., Velichko, O. O. (2013). Vpliv іzotermіchnogo gartuvannia na znosostіikіst visokokhromistikh splavіv v umovakh tertia pri pіdvishchenikh temperaturakh. Mashinoznavstvo, 7–8 (193–194), 59–63.
Kutcova, V. Z., Kovzel, M. A., Grebeneva, A. V., Velichko, O. O. (2014). Tribotekhnicheskie svoistva vysokokhromistykh splavov v litom i termoobrabotannom sostoianii pri komnatnoi i povyshennoi temperature ispytanii. Metallurgicheskaia i gornorudnaia promyshlennost, 3, 69–74.
Kindrachuk, M. V., Kutcova, V. Z., Kovzel, M. A., Grebeneva, A. V., Danilov, A. P., Khlevina, Iu. L. (2012). Tribotekhnicheskie svoistva vysokokhromistykh splavov v litom i termoobrabotannom sostoianii. Problemi tribologіi (Problems of Tribology), 2, 58–63.
Puzhailo, L. P., Serіi, A. V., Polivoda, S. L. (2010). Tekhnologiia i oborudovanie dlia polucheniia slitkov iz vysokoprochnykh aliuminievykh deformiruemykh splavov metodom polunepreryvnogo littia. Vіsnik Donbaskoi derzhavnoi mashinobudіvnoi akademіi, 3, 227–229. Available at: http://www.dgma.donetsk.ua/science_public/ddma/2010-3-20/article/10PLDMSL.pdf
Polyvoda, S. L., Siryi, O. V., Puzhailo, L. P. (2012). Pat. No. 100231 UA. Apparatus for manufacturing and electromagnet casting alloys into casting molds. MPK B22D 39/00, B22D 35/00, H05B 6/02. No. a200907285. declareted: 10.07.2009; published: 10.12.2012, Bul. No. 23. Available at: https://uapatents.com/4-100231-ustanovka-dlya-prigotuvannya-ta-elektromagnitnogo-rozlivannya-splaviv-u-livarni-formi.html
Puzhailo, L. P., Gavriliuk, V. P., Polivoda, S. L., Seryi, A. V., Gordynia, A. N. (2012). Issledovanie protcessa polunepreryvnogo litia slitkov iz vtorichnogo aliuminievogo splava AD31. Metall i lite Ukrainy, 7, 20–22.
Narivskiy, A., Polyvoda, S., Voron, M., Siryi, O. (2022). MHD-processes and equipment for continuous casting of aluminum alloy ingots. Casting Processes, 4 (150), 22–27. doi: https://doi.org/10.15407/plit2022.04.022
Holländer, D., Kulawinski, D., Weidner, A., Thiele, M., Biermann, H., Gampe, U. (2016). Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades. International Journal of Fatigue, 92 (5), 262–271. doi: https://doi.org/10.1016/j.ijfatigue.2016.07.014
Glotka, O. A., Olshanetskii, V. Yu. (2023). Mathematical Prediction of the Properties of Heat-Resistant Nickel Alloys After Directional Crystallization. Materials Science, 58 (5), 679–685. doi: https://doi.org/10.1007/s11003-023-00716-z
Wahl, J. B., Harris, K. (2016). CMSX-4 plus single alloy development, characterization and application development. Superalloys 2016: Proc. Of the 13th International Symposium on Superalloys. TMS, 25–33. doi: https://doi.org/10.1002/9781119075646.ch3
Cueto-Rodriguez, M. M., Avila-Davila, E. O., Lopez-Hirata, V. M., Saucedo-Muñoz, M. L., Palacios-Pineda, L. M., Trapaga-Martinez, L. G., Alvarado-Orozco, J. M. (2018). Numerical and Experimental Analyses of the Effect of Heat Treatments on the Phase Stability of Inconel 792. Advances in Materials Science and Engineering, 2018, 1–16. doi: https://doi.org/10.1155/2018/4535732
Klochykhin, V. V., Pedash, O. O., Danilov, S. M., Tyomkin, D. O., Naumyk, O. O., Naumyk, V. V. (2022). Hot Isostatic Pressing in the Manufacture of ZhS3DK-VI Alloy Turbine Blades with 50% Returns in the Charge. Strength of Materials, 54 (6), 1043–1049. doi: https://doi.org/10.1007/s11223-023-00479-7
Zhang, J. S., Matsugi, K., Murata, Y., Morinaga, M., Yukawa, N. (1992). Evaluation of the phase stability of modified IN738LC alloys with New Phacomp. Journal of Materials Science Letters, 11 (8), 446–448. doi: https://doi.org/10.1007/bf00731099
Balyts’kyi, A. I., Kvasnyts’ka, Yu. H., Ivas’kevich, L. M., Myal’nitsa, H. P. (2018). Corrosion- and Hydrogen-Resistance of Heat-Resistant Blade Nickel-Cobalt Alloys. Materials Science, 54 (2), 230–239. doi: https://doi.org/10.1007/s11003-018-0178-z
Kvasnytska, Yu. H., Kliass, O. V., Kreshchenko, V. A., Mialnytsia, H. P., Maksiuta, I. I., Shynskyi, O. Y. (2016). Pat. No. 110529 UA. Zharomitsnyi koroziinostiikyi splav na nikelevii osnovi dlia lopatok hazoturbinnykh dvyhuniv. MKP C22C 19/05, C22C 19/00, C22C 19/03. No. a201401359. declareted: 12.02.2012; published: 12.01.2016, Bul. No. 1. Available at: https://uapatents.com/6-110529-zharomicnijj-korozijjnostijjkijj-splav-na-nikelevijj-osnovi-dlya-lopatok-gazoturbinnikh-dviguniv.html
Niakan, A. A., Idris, M. H., Ourdjini, A., Karimian, M. (2012). Effect of Applying Air Pressure on Gas Porosity in Lost Foam Casting of Al-Si Alloy. Advanced Materials Research, 628, 150–155. doi: https://doi.org/10.4028/www.scientific.net/amr.628.150
Kaliuzhnyi, P. (2020). Influence of Sand Fluidization on Structure and Properties of Aluminum Lost Foam Casting. Archives of Foundry Engineering, 20 (1), 122–126. doi: https://doi.org/10.24425/afe.2020.131293
Kaliuzhnyi, P., Shalevska, I., Sliusarev, V. (2023). Microstructure of reinforced cast iron produced by lost foam casting. Archives of Metallurgy and Materials, 68 (4), 1369–1375.