MODERN METHODS OF DIAGNOSING DISEASES

Authors

Ivan Mamontov, Kharkiv National Medical University; Kostyantin Kramarenko, Kharkiv National Medical University; Tamara Tamm, Kharkiv National Medical University; Valentin Nepomniashchyi, Kharkiv National Medical University; Olena Shakalova, Kharkiv National Medical University; Dmytro Ryabushchenko, Kharkiv National Medical University; Olha Yuryk, State Institution «Іnstitute of Traumatology and Orthopedics of the National Academy of Medical Science of Ukraine»; Lukyan Anatychuk, (1) Institute of Thermoelectricity of National Academy of Sciences and Ministry of Education and Science of Ukraine; Roman Kobylianskyi, (1) Institute of Thermoelectricity of National Academy of Sciences and Ministry of Education and Science of Ukraine; Nadiia Yuryk, State Institution «Іnstitute of Traumatology and Orthopedics of the National Academy of Medical Science of Ukraine»; Liliia Yukhymenko, Cherkasy National University Named after Bohdan Khmelnyskyi; Sergii Khomenko, Cherkasy National University Named after Bohdan Khmelnyskyi; Lidiia Iliukha, Cherkasy National University Named after Bohdan Khmelnyskyi; Dmytro Maltsev, Bogomolets National Medical University; Lyudmyla Yuryeva, Dnipro State Medical University; Andrii Shornikov, Dnipro State Medical University

Keywords:

monitoring, diagnostics, nervous system, basic nervous processes, functional mobility, central nervous system, higher nervous activity, sensorimotor reactivity, individual typological properties, autism spectrum disorders, attention deficit hyperactivity disorder, obsessive-compulsive syndrome, immunodiagnostics, biochemical correction, immunotherapy, ERCP, endoscopic lithoextraction, biliary obstruction, biliary decompression, choledocholithiasis, Mirizzi syndrome, tumor obstruction, chronic pancreatitis, heat flux density, temperature, thermometric indicators, inflammatory processes of the human body, osteochondrosis of the spine, thermoelectric device, internet addiction, cyber addiction, diagnosis, YSCAS scale, computer addiction, mental health problem

Synopsis

Collective monograph contains the results of scientific research devoted to new views and proposals for the diagnosis of certain diseases. The proposed solutions are important for clinical practice and inspire optimism in obtaining encouraging results in overcoming some pathologies.

Chapter 1 is dedicated to endoscopic retrograde cholangiopancreatography - a contrast study of the bile ducts and ductal system of the pancreas, which is achieved by their cannulation with the help of a flexible endoscope and their visualization by X-ray (fluoroscopy). Thanks to this, it becomes possible to diagnose and perform medical interventions for choledocholithiasis, benign and malignant obstruction of the bile ducts, chronic pancreatitis accompanied by obstruction of the pancreatic ducts.

Chapter 2 presents the results of the development of a thermoelectric device for diagnosing inflammatory processes and pain syndrome in degenerative-dystrophic diseases of the lumbosacral spine. Such a device makes it possible to save, process and visualize measurement results on the display of the device and on a personal computer in real time. The results of clinical studies of thermometric indicators in the lumbosacral region of the spine in persons with chronic pain syndrome against the background of degenerative-dystrophic pathology of the spine in the presence of hernias and protrusions of intervertebral discs are given. The effectiveness of the proposed thermoelectric device in medical practice has been confirmed.

Chapter 3 presents the results of the examination of various contingents of the population: students, athletes, mobile operators, people with hearing loss, post-covid syndrome and psychophysiological lability developed under martial law. The features of information processing by examinees with different degrees of functional mobility of nervous processes are highlighted. It was found that the deprivation of auditory function, post-conviction syndrome, psychophysiological lability developed in the conditions of martial law significantly reduce the level of neural processes and the ability to process information.
The evaluation scales of neurodynamic and sensorimotor functions proposed for use in the medical field can be used to optimize diagnosis and increase the effectiveness of monitoring neurological morbidity, including in people with special needs.

Chapter 4 is devoted to the problems of children's neuropsychiatric diseases, in particular brain damage in children with ASD. Restrained optimism is expressed for the prospect of overcoming this severe psychiatric pathology in the foreseeable future due to the introduction of genetic, biochemical and immunodiagnostic approaches, as well as metabolic and immunotherapeutic interventions with neuroprotective effects. Arguments are presented in favor of the fact that the successful testing in clinical practice of evidence-based personalized multidisciplinary strategies of diagnosis and treatment will allow a breakthrough in the clinical management of children with severe mental disorders in the near future. This will provide not only the possibility of recovery from a prognostically unfavorable and currently incurable neuropsychiatric disorder, but will also contribute to stopping the large-scale threatening epidemic of neuropsychiatric syndromes in the modern child population.

Chapter 5 presents the evolution of views on the problem of Internet addiction, provides information on its prevalence, comorbidity with mental disorders, and provides an overview of modern clinical classifications and psychometric tools for its diagnosis. A single definition of "cyber addiction" is singled out, based on the fact that the object of addiction is interaction with various information resources and technical means.
The proposed clinical diagnostic criteria, which are based on the criteria for the diagnosis of mental and behavioral disorders due to the use of psychoactive substances ICD-11, and the characteristics of the boundary with normative behavior when using various information resources and technical means are provided. The development and validation of a new psychodiagnostic screening tool based on the proposed cyber addiction paradigm, the YSCAS scale, is presented.

The monograph is intended for doctors and practitioners who are engaged in the search and implementation of effective diagnostic methods to overcome the problems associated with the detection and treatment of certain pathologies. The monograph can also be useful to postgraduate and master's students of universities in the relevant educational and scientific profile.

ISBN 978-617-7319-65-7 (on-line)

------------------------------------------------------------------------------------------------------------------

How to Cite: Modern methods of diagnosing disaeses (2023). Kharkiv: PC TECHNOLOGY CENTER, 176. doi: https://doi.org/10.15587/978-617-7319-65-7

------------------------------------------------------------------------------------------------------------------

Indexing:

b1.jpg arch imgonline-com-ua-Resize-8lhbZm409l.jpg engpaper Zenodo451.png openaire45.png scilit ouci.jpg dimen_(1).png

 

CHAPTER 1 Endoscopic retrograde cholangiopancreatography
by Ivan Mamontov, Kostyantin Kramarenko, Tamara Tamm, Valentin Nepomniashchyi, Olena Shakalova, Dmytro Rjabushhenko
https://doi.org/10.15587/978-617-7319-65-7.ch1

CHAPTER 2 Measurement of heat flux density as a new method of diagnosing neurological
by Olha Yuryk, Lukyan Anatychuk, Roman Kobylianskyi, Nadiia Yuryk
https://doi.org/10.15587/978-617-7319-65-7.ch2

CHAPTER 3 Diagnosis and monitoring of the functioning of the human nervous system
by Liliia Yukhymenko, Sergii Khomenko, Lidiia Iliukha
https://doi.org/10.15587/978-617-7319-65-7.ch3

CHAPTER 4 Folate-centric concept of pathogenesis and GBINC personalized multidisciplinary
by Dmytro Maltsev
https://doi.org/10.15587/978-617-7319-65-7.ch4

CHAPTER 5 Cyber addiction: a new view and approaches to diagnostics
by Lyudmyla Yuryeva, Andrii Shornikov
https://doi.org/10.15587/978-617-7319-65-7.ch5

Author Biographies

Ivan Mamontov, Kharkiv National Medical University

Doctor of Medical Science, Associate Professor
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0003-0059-2715

Kostyantin Kramarenko, Kharkiv National Medical University

PhD, Associate Professor
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0002-1997-8928

Tamara Tamm, Kharkiv National Medical University

Doctor of Medical Sciences, Professor
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0001-6372-2092 

Valentin Nepomniashchyi, Kharkiv National Medical University

Doctor of Medical Science, Associate Professor
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0001-6262-6795

Olena Shakalova, Kharkiv National Medical University

PhD, Associate Professor
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0003-3401-4278

Dmytro Ryabushchenko, Kharkiv National Medical University

Postgraduate Student
Department of Surgery No. 6
ID ORCID   https://orcid.org/0000-0002-0655-1466

Olha Yuryk, State Institution «Іnstitute of Traumatology and Orthopedics of the National Academy of Medical Science of Ukraine»

Doctor of Medical Science, Professor, Head of Laboratory
Laboratory of Neuroorthopedics and pain problems
ID ORCID   https://orcid.org/0000-0003-2245-9333 

Lukyan Anatychuk, (1) Institute of Thermoelectricity of National Academy of Sciences and Ministry of Education and Science of Ukraine

(1) Doctor of Physical and Mathematical Sciences, Professor
Director of Institute
(2) Head of Department
Department of Thermoelectricity
Yuriy Fedkovych Chernivtsi National University
ID ORCID   https://orcid.org/0000-0002-2521-7666 

Roman Kobylianskyi, (1) Institute of Thermoelectricity of National Academy of Sciences and Ministry of Education and Science of Ukraine

(1) PhD, Senior Researcher
(2) Department of Thermoelectricity
Yuriy Fedkovych Chernivtsi National University
ID ORCID   https://orcid.org/0000-0002-4664-3162 

Nadiia Yuryk, State Institution «Іnstitute of Traumatology and Orthopedics of the National Academy of Medical Science of Ukraine»

Doctor

Liliia Yukhymenko, Cherkasy National University Named after Bohdan Khmelnyskyi

Doctor of Biological Sciences, Associate Professor
Department of Anatomy, Physiology and Physical Rehabilitation
ID ORCID   http://orcid.org/0000-0002-4455-6233

Sergii Khomenko, Cherkasy National University Named after Bohdan Khmelnyskyi

PhD, Associate Professor
Department of Anatomy, Physiology and Physical Rehabilitation
ID ORCID   http://orcid.org/0000-0003-0918-8735

Lidiia Iliukha, Cherkasy National University Named after Bohdan Khmelnyskyi

PhD, Associate Professor
Department of Anatomy, Physiology and Physical Rehabilitation
ID ORCID   https://orcid.org/0000-0001-9650-805X

Dmytro Maltsev, Bogomolets National Medical University

PhD, Head of the Laboratory
Laboratory of immunology and molecular biology
Research institute of experimental and clinical medicine
ID ORCID   https://orcid.org/0000-0002-6615-3072

Lyudmyla Yuryeva, Dnipro State Medical University

Doctor of Medical Science, Professor
Department of Psychiatry, Narcology, Medical Psychology
ID ORCID   https://orcid.org/0000-0002-1713-1037

Andrii Shornikov, Dnipro State Medical University

Assistant
Department of Psychiatry, Narcology, Medical Psychology
ID ORCID   https://orcid.org/0000-0001-8196-9128

References

McCune, W. S., Shorb, P. E., Moscovitz, H. (1968). Endoscopic Cannulation of the Ampulla of Vater. Annals of Surgery, 167 (5), 752–756. doi: https://doi.org/10.1097/00000658­196805000­00013

Cotton, P., Leung, J. (2006). Advanced Digestive Endoscopy: ERCP. Malden: Blackwell Publishing.

Kawai, K., Akasaka, Y., Murakami, K., Tada, M., Kohli, Y., Nakajima, M. (1974). Endoscopic sphincterotomy of the ampulla of Vater. Gastrointestinal Endoscopy, 20 (4), 148–151. doi: https://doi.org/10.1016/s0016­5107(74)73914­1

Classen, M., Demling, L. (1974). Endoskopische Sphinkterotomie der Papilla Vateri und Steinextraktion aus dem Ductus choledochus. DMW – Deutsche Medizinische Wochenschrift, 99 (11), 496–497. doi: https://doi.org/10.1055/s­0028­1107790

Soehendra, N., Reynders­Frederix, V. (1980). Palliative Bile Duct Drainage – A New Endoscopic Method of Introducing a Transpapillary Drain. Endoscopy, 12 (1), 8–11. doi: https://doi.org/10.1055/s­2007­1021702

Lammer, J., Lepuschütz, H., Sager, W. D., Kratochvil, P., Brandstätter, G., Zalaudek, G. (1980). ERCP und CT in der Diagnostik von chronischer Pankreatitis, Pseudozysten und Pankreaskarzinom – ein Vergleich. Rontgenblatter, 33 (12), 602–611.

Shimizu, S., Yokohata, K., Mizumoto, K., Yamaguchi, K., Chijiiwa, K., Tanaka, M. (2002). Laparoscopic choledochotomy for bile duct stones. Journal of Hepato­Biliary­Pancreatic Surgery, 9 (2), 201–205. doi: https://doi.org/10.1007/s005340200019

Baron, T. H., Kozarek, R., Carr­Locke, D. L. (2008). ERCP. W. B. Saunders, 493–505. doi: https://doi.org/10.1016/B978­1­4160­4271­6.50051­4

Yuen, N., O'Shaughnessy, P., Thomson, A. (2017). New classification system for indications for endoscopic retrograde cholangiopancreatography predicts diagnoses and adverse events. Scandinavian Journal of Gastroenterology, 52 (12), 1457–1465. doi: https://doi.org/10.1080/00365521.2017.1384053

Shah, S. L., Carr­Locke, D. (2020). ERCP for acute cholangitis: timing is everything. Gastrointestinal Endoscopy, 91 (4), 761–762. doi: https://doi.org/10.1016/j.gie.2019.12.010

Mamontov, I. N. (2019). Shkala opredeleniia pokazanii k ERKhPG i endoskopicheskim vmeshatelstvam u bolnykh s obstruktciei vnepechenochnykh zhelchnykh putei. Kharkіvska khіrurgіchna shkola, 3­4 (96­97), 108–113.

Talukdar, R. (2016). Complications of ERCP. Best Practice & Research Clinical Gastroenterology, 30 (5), 793–805. doi: https://doi.org/10.1016/j.bpg.2016.10.007

Johnson, K. D., Perisetti, A., Tharian, B., Thandassery, R., Jamidar, P., Goyal, H., Inamdar, S. (2019). Endoscopic Retrograde Cholangiopancreatography­Related Complications and Their Management Strategies: A "Scoping" Literature Review. Digestive Diseases and Sciences, 65 (2), 361–375. doi: https://doi.org/10.1007/s10620­019­05970­3

Ak, Ç., Aykut, H., Pala, E., Sayar, S., Tarikçi Kiliç, E., Adali, G. et al. (2022). Post­ERCP Complication Analysis of an Experienced Center. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 32 (6), 707–713. doi: https://doi.org/10.1097/sle.0000000000001113

Tryliskyy, Y., Bryce, G. (2018). Post­ERCP pancreatitis: Pathophysiology, early identification and risk stratification. Advances in Clinical and Experimental Medicine, 27 (1), 149–154. doi: https://doi.org/10.17219/acem/66773

Mine, T., Morizane, T., Kawaguchi, Y., Akashi, R., Hanada, K., Ito, T. et al. (2017). Clinical practice guideline for post­ERCP pancreatitis. Journal of Gastroenterology, 52 (9), 1013–1022. doi: https://doi.org/10.1007/s00535­017­1359­5

Cahyadi, O., Tehami, N., de­Madaria, E., Siau, K. (2022). Post­ERCP Pancreatitis: Prevention, Diagnosis and Management. Medicina, 58 (9), 1261. doi: https://doi.org/10.3390/medicina58091261

Shen, C., Shi, Y., Liang, T., Su, P. (2017). Rectal NSAIDs in the prevention of post­endoscopic retrograde cholangiopancreatography pancreatitis in unselected patients: Systematic review and meta­analysis. Digestive Endoscopy, 29 (3), 281–290. doi: https://doi.org/10.1111/den.12816

Bae, S. S., Lee, D. W., Han, J., Kim, H. G. (2019). Risk factor of bleeding after endoscopic sphincterotomy in average risk patients. Surgical Endoscopy, 33 (10), 3334–3340. doi: https://doi.org/10.1007/s00464­018­06623­8

Yilmaz, H., Koçyiğit, B. (2022). Predictors of postendoscopic retrograde cholangiopancreatography associated cholangitis: a retrospective cohort study. Turkish Journal of Medical Sciences, 52 (1), 105–112. doi: https://doi.org/10.3906/sag­2109­84

Chen, M., Wang, L., Wang, Y., Wei, W., Yao, Y.­L., Ling, T.­S., Shen, Y.­H., Zou, X.­P. (2018). Risk factor analysis of post­ERCP cholangitis: A single­center experience. Hepatobiliary & Pancreatic Diseases International, 17 (1), 55–58. doi: https://doi.org/10.1016/j.hbpd.2018.01.002

Boonsinsukh, T., Viriyaroj, V., Yodying, H. (2016). Risk Factors for Post Endoscopic Retrograde Cholangiopancreatography Cholangitis. Journal of the Medical Association of Thailand, 8, S166–S170.

Cao, J., Peng, C., Ding, X., Shen, Y., Wu, H., Zheng, R., Wang, L., Zou, X. (2018). Risk factors for post­ERCP cholecystitis: a single­center retrospective study. BMC Gastroenterology, 18 (1). doi: https://doi.org/10.1186/s12876­018­0854­3

Ting, P.­H., Luo, J.­C., Lee, K.­C., Chen, T.­S., Huang, Y.­H., Hou, M.­C., Lee, F.­Y. (2020). Post endoscopic retrograde cholangiopancreatography cholecystitis: The incidence and risk factors analysis. Journal of the Chinese Medical Association, 83 (8), 733–736. doi: https://doi.org/10.1097/jcma.0000000000000383

Manes, G., Paspatis, G., Aabakken, L., Anderloni, A., Arvanitakis, M., Ah­Soune, P. et al. (2019). Endoscopic management of common bile duct stones: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy, 51 (5), 472–491. doi: https://doi.org/10.1055/a­0862­0346

Trikudanathan, G., Navaneethan, U., Parsi, M. A. (2013). Endoscopic management of difficult common bile duct stones. World Journal of Gastroenterology, 19 (2), 165–173. doi: https://doi.org/10.3748/wjg.v19.i2.165

Cianci, P., Restini, E. (2021). Management of cholelithiasis with choledocholithiasis: Endoscopic and surgical approaches. World Journal of Gastroenterology, 27 (28), 4536–4554. doi: https://doi.org/10.3748/wjg.v27.i28.4536

Mamontov, Y. N. (2016). Rezultati lechenyia bolnikh po povodu syndroma Mirizzi. Klinichna khirurhiia, 9 (890), 25–27.

Mirizzi, P. L. (1948). Sndrome del conducto heptico. J. Int. Chir., 8, 731–777.

McSherry, C. K., Ferstenberg, H., Virshup, M. (1982). The Mirizzi syndrome: Suggested classification and surgical treatment. Surg Gastroenterol, 1, 219–225.

Beltran, M. A., Csendes, A., Cruces, K. S. (2008). The Relationship of Mirizzi Syndrome and Cholecystoenteric Fistula: Validation of a Modified Classification. World Journal of Surgery, 32 (10), 2237–2243. doi: https://doi.org/10.1007/s00268­008­9660­3

Aadam, A. A., Liu, K. (2019). Endoscopic palliation of biliary obstruction. Journal of Surgical Oncology, 120 (1), 57–64. doi: https://doi.org/10.1002/jso.25483

van der Gaag, N. A., Rauws, E. A. J., van Eijck, C. H. J., Bruno, M. J., van der Harst, E., Kubben, F. J. G. M. et al. (2010). Preoperative Biliary Drainage for Cancer of the Head of the Pancreas. New England Journal of Medicine, 362 (2), 129–137. doi: https://doi.org/10.1056/nejmoa0903230

Tamura, T., Itonaga, M., Ashida, R., Yamashita, Y., Hatamaru, K., Kawaji, Y. et al. (2021). Covered self-expandable metal stents versus plastic stents for preoperative biliary drainage in patient receiving neo­adjuvant chemotherapy for borderline resectable pancreatic cancer: Prospective randomized study. Digestive Endoscopy, 33 (7), 1170–1178. doi: https://doi.org/10.1111/den.13926

Riff, B. P., Chandrasekhara, V. (2016). The Role of Endoscopic Retrograde Cholangiopancreatography in Management of Pancreatic Diseases. Gastroenterology Clinics of North America, 45 (1), 45–65. doi: https://doi.org/10.1016/j.gtc.2015.10.009

Rio­Tinto, R., Canena, J. (2020). Endoscopic Treatment of Post­Cholecystectomy Biliary Leaks. GE – Portuguese Journal of Gastroenterology, 28 (4), 265–273. doi: https://doi.org/10.1159/000511527

Gawlik, C., Carneval, M. (2021). A Review of the Management of Bile Leaks. Cureus, 13 (5), e14937. doi: https://doi.org/10.7759/cureus.14937

Yuryk, O. Ye.; Krynsky, A., Galovidin, A., Rudnicki, M. (Eds.) (2022). Features of some neurological disordes by degenerative­dystrophic pathology of the spine. Polonia University in Czenstochova. Modern science and education in Ukraine and EU countriesi gimperatives, transformation, development vectores. Riga: Baltia Publishing, 246–263. doi: https://doi.org/10.30525/978­9934­26­240­1­13

Yuryk, O. Ye. (2001). Nevrolohichni proiavy osteokhondrozu: patohenez, klinika, likuvannia. Kyiv: Zdorovia, 344.

Murashko, N. K., Morozova, O. H.; Murashko, N. K. (Ed.) (2013). Refleksoterapiia. Vol. 2. Kyiv: Tov SYK Hrup Ukrayna, 421.

Sviridova, N. K., Sereda, V. H., Dovhyi, V. L., Popov, O. V., Shcherbatyi, A. A. (2018). Diagnosis of vertebrogenic pain syndromes. Skhidno­Ievropeiskyi nevrolohichnyi zhurnal, 1, 4–12.

Mixter, W. J., Barr, J. S. (1934). Rupture of the Intervertebral Disc with Involvement of the Spinal Canal. New England Journal of Medicine, 211 (5), 210–215. doi: https://doi.org/10.1056/nejm193408022110506

Macheret, Ye. L., Dovhyi, I. L., Korkushko, O. O. (2006). Osteokhondroz poperekovoho viddilu khrebta, uskladnenyi hryzhamy dyskiv. Vol. 1, 2. Kyiv.

Jensen, M. P., Dworkin, R. H., Gammaitoni, A. R., Olaleye, D. O., Oleka, N., Galer, B. S. (2005). Assessment of pain quality in chronic neuropathic and nociceptive pain clinical trials with the Neuropathic Pain Scale. The Journal of Pain, 6 (2), 98–106. doi: https://doi.org/10.1016/j.jpain.2004.11.002

Kovacs, F. M., Arana, E., Royuela, A., Estremera, A., Amengual, G., Asenjo, B. et al. (2012). Vertebral Endplate Changes Are Not Associated with Chronic Low Back Pain among Southern European Subjects: A Case Control Study. American Journal of Neuroradiology, 33 (8), 1519–1524. doi: https://doi.org/10.3174/ajnr.a3087

Foley, K. T., Smith, M. M. (1997). Microendoscopic Discectomy. Techniques in Neurosurgery, 3, 301–307.

Popelianskii, Ia. Iu. (1989). Bolezni perifericheskoi nervnoi sistemy. Moscow: Meditcina, 464.

Kalka, N. I. (2015). Profilaktyka i podolannia syndromu khronichnoi vtomy u pratsivnykiv OVS. Lviv: LvDUVS, 84.

Chupryna, H. M., Macheret, Ye. L., Kovalenko, O. Ye. (2007). Astenichni syndromy v strukturi nevrolohichnoi patolohii. Zbirnyk naukovykh prats spivrobitnykiv NMAPO im. P. L. Shupyka, 16 (4), 751–762.

Golovchenko, Iu. I. (1985). O diagnostike i klassifikatcii zabolevanii perifericheskogo otdela nervnoi sistemy. Vrachebnoe delo, 7, 98–102.

Iankovskii, G. A. (1982). Osteoretceptciia. Riga: Zinatne, 316.

Anatychuk, L. I. (1979). Termoelementy i termoelektricheskie ustroistva. Kyiv: Naukova dumka, 768.

Demchuk, B. M., Kushneryk, L. Ya., Rublenyk, I. M. (2002). Termoelektrychni datchyky dlia ortopedii. Termoelektryka, 4, 80–85.

Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A. (2014). Hraduiuvannia termoelektrychnykh sensoriv teplovoho potoku. Suchasni informatsiini ta elektronni tekhnolohii. Odesa, 30–31.

Kobylianskyi, R. R., Boichuk, V. V. (2015). Vykorystannia termoelektrychnykh teplomiriv u medychnii diahnostytsi. Naukovyi visnyk Chernivetskoho universytetu. Fizyka. Elektronika, 4 (1), 90–96.

Hyshchuk, V. S. (2013). Modernizovanyi prylad dlia vymiriuvannia teplovykh potokiv liudyny. Termoelektryka, 2, 91–95.

Anatychuk, L. I., Ivashchuk, O. I., Kobylianskyi, R. R., Postevka, I. D., Bodiaka, V. Yu., Hushul, I. Ya. (2016). Termoelektrychnyi prylad dlia vymiriuvannia temperatury i hustyny teplovoho potoku "ALTEK­10008". Termoelektryka, 1, 76–84.

Anatychuk, L. I., Yuryk, O. Ye., Kobylianskyi, R. R., Roi, I. V., Fishchenko, Ya. V., Slobodianiuk, N. P. et al. (2017). Termoelektrychnyi prylad dlia diahnostyky zapalnykh protsesiv ta nevrolohichnykh proiaviv osteokhondrozu khrebta liudyny. Termoelektryka, 3, 54–67.

Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A., Lysko, V. V., Puhantseva, O. V., Rozver, Yu. Yu., Tiumentsev, V. A. (2016). Stend dlia hraduiuvannia termoelektrychnykh peretvoriuvachiv teplovoho potoku. Termoelektryka, 5, 71–79.

Anatychuk, L. I., Kobylianskyi, R. R., Konstantynovych, I. A., Kuz, R. V., Manyk, O. M., Nitsovych, O. V., Cherkez, R. H. (2016). Tekhnolohiia vyhotovlennia termoelektrychnykh mikrobatarei. Termoelektryka, 6, 49–54.

Yuryk, O. Ye., Anatychuk, L. I., Roi, I. V., Kobylianskyi, R. R., Fishchenko, Ya. V., Slobodianiuk, N. P. et al. (2017). Osoblyvosti teplovoho obminu u patsiientiv z nevrolohichnymy proiavamy osteokhondrozu v poperekovo­kryzhovomu viddili khrebta. Travma, 18 (6).

Anatychuk, L. I., Luste, O. Ya., Kobylianskyi, R. R. (2017). Informatsiino­enerhetychna teoriia termoelektrychnykh sensoriv temperatury i teplovoho potoku medychnoho pryznachennia. Termoelektryka, 4, 5–20.

Anatychuk, L. I., Kobylianskyi, R. R., Cherkez, R. G., Konstantynovych, I. A., Hoshovskyi, V. I., Tiumentsev, V. A. (2017). Thermoelectric device with electronic control unit for diagnostics of inflammatory processes in the human organism. Tekhnologiia i konstruirovanie v elektronnoi apparature, 6, 44–48. doi: https://doi.org/10.15222/tkea2017.6.44

Anatychuk, L. I., Ivashchuk, O. I., Kobylianskyi, R. R., Postevka, I. D., Bodiaka, V. Yu., Hushul, I. Ya., Chuprovska, Yu. Ya. (2018). Pro vplyv temperatury navkolyshnoho seredovyshcha na pokazy termoelektrychnykh sensoriv medychnoho pryznachennia. Sensorna elektronika i mikrosystemni tekhnolohii, 15 (1), 17–29.

Anatychuk, L. I., Yuryk, O. Ye., Strafun, S. S., Stashkevych, A. T., Kobylianskyi, R. R., Chev'iuk, A. D. et al. (2021). Thermometric indicators in patients with chronic lower back pain. Termoelektryka, 1, 52–66.

Veselovskii, V. P. (1995). Prakticheskaia vertebronevrologiia i manualnaia terapiia. Riga, 394.

Andriuchenko, T., Vakulenko, O., Volkov, V., Dziuba, N., Koliada, V., Komarova, N. et al. (2019). Formuvannia zdorovoho sposobu zhyttia molodi. Navchalno­metodychni rekomendatsii. Kyiv: Blank­Pres, 120.

Markovych, I. F. (2016). Medychno­sotsiolohichne doslidzhennia faktoriv sposobu zhyttia, profesiinoi diialnosti ta osobystoho vidnoshennia do medychnoi dopomohy viiskovosluzhbovtsiv. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorov'ia Ukrainy, 4, 57–65.

Makarenko, M. V., Kyrylenko, L. P. (2015). Rol indyvidualno­typolohichnykh vlastyvostei vyshchoi nervovoi diialnosti liudyny v uspishnosti navchannia ta nadiinosti profesiinoi diialnosti. Fiziolohichnyi zhurnal, 3, 118–126.

Prashko, Ya., Mozhny, P., Shlepetsky, M. (2017). Kohnityvno­bikhevioralna terapiia psykhichnykh rozladiv. Praha, 1072.

Chagas, D. V., Batista, L. A. (2017). Comparison of Health Outcomes Among Children with Different Levels of Motor Competence. Human Movement, 18 (2), 56–61. doi: https://doi.org/10.1515/humo­2017­0018

Makarenko, M. V. (2006). Osnovy profesiinoho vidboru viiskovykh spetsialistiv ta metodyky vyvchennia indyvidualnykh psykhofiziolohichnykh vidminnostei mizh liudmy. Kyiv: In­t fiziolohii im. O.O. Bohomoltsia, 395.

Makarenko, M. V., Lyzohub, V. S., Halka, M. S., Yukhymenko, L. I., Khomenko, S. M. (2011). Pat. No. 96496 UA. Sposib psykhofiziolohichnoi otsinky funktsionalnoho stanu slukhovoho analizatora. MPK: A 61V5/16. No. a 2010 02225; declareted: 01.03.2010; published: 10.11.2011, Bul. No. 21.

Makarenko, M. V., Lyzohub, V. S., Yukhymenko, L. I., Khomenko, S. M. (2014). Pat. No. 106028 UA. Sposib vyznachennia shvydkosti tsentralnoi obrobky informatsii vyshchymy viddilamy nervovoi systemy. MPK: A 61V5/16. No. a 2013 12529; declareted: 25.10.2013; published: 10.07.2014, Bul. No. 13.

Myshchenko, T. S. (2017). Epidemiology of cerebrovascular diseases and organization of medical care for patients with stroke in Ukraine. Ukrainskyi visnyk psykhonevrolohii, 25 (1 (90)), 22–24.

Sekeon, S. A., Warouw, F., Mantjoro, E. (2020). Sleep quality and cognitive dysfunction among acute stroke patients from coastal areas of north sulawesi, indonesia. Journal of Clinical and Diagnostic Research, 14 (1), 6–8. doi: https://doi.org/10.7860/jcdr/2020/41322.13414

Lockwood, C. (2017). Cognitive rehabilitation for memory deficits after stroke: A Cochrane review summary. International Journal of Nursing Studies, 76, 131–132. doi: https://doi.org/10.1016/j.ijnurstu.2017.02.011

Kokun, O. M., Pishko, I. O., Lozinska, N. S., Kopanytsia, O. V., Malkhazov, O. R. (2011). Zbirnyk metodyk dlia diahnostyky psykholohichnoi hotovnosti viiskovosluzhbovtsiv viiskovoi sluzhby za kontraktom do diialnosti u skladi myrotvorchykh pidrozdiliv. Kyiv: NDTs HP ZSU, 281.

Yukhymenko, L. I. (2022). Manifestations of the post­COVID Syndrome in the functional Characteristics of the human brain. The role of medical science in implementing innovative medical technologies in the eu countries and Ukraine, 264–277. doi: https://doi.org/10.30525/978­9934­26­240­1­14

Yukhimenko, L. (2016). Eletroencephalographic correlates of the speed (time) of the central processing of information by the higher parts of brain in humans with the different individual­typological features of the higher nervous activity. EUREKA: Life Sciences, 2, 51–56. doi: https://doi.org/10.21303/2504­5695.2016.00068

Yukhymenko, L. I., Makarchuk, M. Yu., Lizogub, V. S. (2019). Specificities of Cortical Processing of Visual Information in Subjects with Hearing Deprivation (Congenital Deafness). Neurophysiology, 51 (5), 344–352. doi: https://doi.org/10.1007/s11062­020­09828­7

Hughes, H. K., Mills Ko, E., Rose, D., Ashwood, P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 12. doi: https://doi.org/10.3389/fncel.2018.00405

Maenner, M. J., Shaw, K. A., Baio, J. et al. (2016). Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. Morbidity and Mortality Weekly Report, 69 (4). Available at: https://www.cdc.gov/mmwr/volumes/69/ss/ss6904a1.htm

Catalá­López, F., Hutton, B., Page, M. J., Driver, J. A., Ridao, M., Alonso­Arroyo, A. et al. (2022). Mortality in Persons With Autism Spectrum Disorder or Attention­Deficit/Hyperactivity Disorder. JAMA Pediatrics, 176 (4), e216401. doi: https://doi.org/10.1001/jamapediatrics.2021.6401

O'Halloran, L., Coey, P., Wilson, C. (2022). Suicidality in autistic youth: A systematic review and meta­analysis. Clinical Psychology Review, 93, 102144. doi: https://doi.org/10.1016/j.cpr.2022.102144

Zheng, Z., Zheng, P., Zou, X. (2018). Association between schizophrenia and autism spectrum disorder: A systematic review and meta­analysis. Autism Research, 11 (8), 1110–1119. doi: https://doi.org/10.1002/aur.1977

Frye, R. E. (2022). A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. Journal of Personalized Medicine, 12 (3), 464. doi: https://doi.org/10.3390/jpm12030464

Cakir, J., Frye, R. E., Walker, S. J. (2020). The lifetime social cost of autism: 1990–2029. Research in Autism Spectrum Disorders, 72, 101502. doi: https://doi.org/10.1016/j.rasd.2019.101502

Tick, B., Bolton, P., Happé, F., Rutter, M., Rijsdijk, F. (2015). Heritability of autism spectrum disorders: a meta­analysis of twin studies. Journal of Child Psychology and Psychiatry, 57 (5), 585–595. doi: https://doi.org/10.1111/jcpp.12499

Henske, E. P., Jóźwiak, S., Kingswood, J. C., Sampson, J. R., Thiele, E. A. (2016). Tuberous sclerosis complex. Nature Reviews Disease Primers, 2 (1). doi: https://doi.org/10.1038/rdp.2016.35

Mpoulimari, I., Zintzaras, E. (2022). Synthesis of genetic association studies on autism spectrum disorders using a genetic model­free approach. Psychiatric Genetics, 32 (3), 91–104. doi: https://doi.org/10.1097/ypg.0000000000000316

Li, Y., Qiu, S., Shi, J., Guo, Y., Li, Z., Cheng, Y., Liu, Y. (2020). Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta­analysis. BMC Pediatrics, 20 (1). doi: https://doi.org/10.1186/s12887­020­02330­3

Shaik Mohammad, N., Sai Shruti, P., Bharathi, V., Krishna Prasad, C., Hussain, T., Alrokayan, S. A., Naik, U., Radha Rama Devi, A. (2016). Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatric Genetics, 26 (6), 281–286. doi: https://doi.org/10.1097/ypg.0000000000000152

Pu, D., Shen, Y., Wu, J. (2013). Association between MTHFR Gene Polymorphisms and the Risk of Autism Spectrum Disorders: A Meta­Analysis. Autism Research, 6 (5), 384–392. doi: https://doi.org/10.1002/aur.1300

Rai, V. (2016). Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metabolic Brain Disease, 31 (4), 727–735. doi: https://doi.org/10.1007/s11011­016­9815­0

Sadeghiyeh, T., Dastgheib, S. A., Mirzaee­Khoramabadi, K., Morovati­Sharifabad, M., Akbarian­Bafghi, M. J., Poursharif, Z. et al. (2019). Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta­analysis. Asian Journal of Psychiatry, 46, 54–61. doi: https://doi.org/10.1016/j.ajp.2019.09.016

Haghiri, R., Mashayekhi, F., Bidabadi, E., Salehi, Z. (2016). Analysis of methionine synthase (rs1805087) gene polymorphism in autism patients in Northern Iran. Acta Neurobiologiae Experimentalis, 76 (4), 318–323. doi: https://doi.org/10.21307/ane­2017­030

Chen, L., Shi, X.­J., Liu, H., Mao, X., Gui, L.­N., Wang, H., Cheng, Y. (2021). Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta­analysis of 87 studies (N = 9109). Translational Psychiatry, 11 (1). doi: https://doi.org/10.1038/s41398­020­01135­3

Frustaci, A., Neri, M., Cesario, A., Adams, J. B., Domenici, E., Dalla Bernardina, B., Bonassi, S. (2012). Oxidative stress­related biomarkers in autism: Systematic review and meta­analyses. Free Radical Biology and Medicine, 52 (10), 2128–2141. doi: https://doi.org/10.1016/j.freeradbiomed.2012.03.011

Guo, B.­Q., Li, H.­B., Ding, S.­B. (2020). Blood homocysteine levels in children with autism spectrum disorder: An updated systematic review and meta­analysis. Psychiatry Research, 291, 113283. doi: https://doi.org/10.1016/j.psychres.2020.113283

Wan, L., Li, Y., Zhang, Z., Sun, Z., He, Y., Li, R. (2018). Methylenetetrahydrofolate reductase and psychiatric diseases. Translational Psychiatry, 8 (1). doi: https://doi.org/10.1038/s41398­018­0276­6

Moll, S., Varga, E. A. (2015). Homocysteine and MTHFR Mutations. Circulation, 132 (1). doi: https://doi.org/10.1161/circulationaha.114.013311

James, S. J., Melnyk, S., Jernigan, S., Cleves, M. A., Halsted, C. H., Wong, D. H. et al. (2006). Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141B (8), 947–956. doi: https://doi.org/10.1002/ajmg.b.30366

Horiuchi, F., Yoshino, Y., Kumon, H., Hosokawa, R., Nakachi, K., Kawabe, K. et al. (2021). Identification of aberrant innate and adaptive immunity based on changes in global gene expression in the blood of adults with autism spectrum disorder. Journal of Neuroinflammation, 18 (1). doi: https://doi.org/10.1186/s12974­021­02154­7

Belardo, A., Gevi, F., Zolla, L. (2019). The concomitant lower concentrations of vitamins B6, B9 and B12 may cause methylation deficiency in autistic children. The Journal of Nutritional Biochemistry, 70, 38–46. doi: https://doi.org/10.1016/j.jnutbio.2019.04.004

Bjørklund, G., Doşa, M. D., Maes, M., Dadar, M., Frye, R. E., Peana, M., Chirumbolo, S. (2021). The impact of glutathione metabolism in autism spectrum disorder. Pharmacological Research, 166, 105437. doi: https://doi.org/10.1016/j.phrs.2021.105437

Frye, R. E. (2020). Mitochondrial Dysfunction in Autism Spectrum Disorder: Unique Abnormalities and Targeted Treatments. Seminars in Pediatric Neurology, 35, 100829. doi: https://doi.org/10.1016/j.spen.2020.100829

Frye, R. E., Rossignol, D. A. (2014). Treatments for Biomedical Abnormalities Associated with Autism Spectrum Disorder. Frontiers in Pediatrics, 2. doi: https://doi.org/10.3389/fped.2014.00066

Rossignol, D. A., Frye, R. E. (2021). The Effectiveness of Cobalamin (B12) Treatment for Autism Spectrum Disorder: A Systematic Review and Meta­Analysis. Journal of Personalized Medicine, 11 (8), 784. doi: https://doi.org/10.3390/jpm11080784

Rossignol, D. A., Frye, R. E. (2021). Cerebral Folate Deficiency, Folate Receptor Alpha Autoantibodies and Leucovorin (Folinic Acid) Treatment in Autism Spectrum Disorders: A Systematic Review and Meta­Analysis. Journal of Personalized Medicine, 11 (11), 1141. doi: https://doi.org/10.3390/jpm11111141

Heuer, L., Ashwood, P., Schauer, J., Goines, P., Krakowiak, P., Hertz­Picciotto, I. et al. (2008). Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Research, 1 (5), 275–283. doi: https://doi.org/10.1002/aur.42

Jyonouchi, H., Geng, L., Streck, D. L., Toruner, G. A. (2012). Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): case study. Journal of Neuroinflammation, 9 (1). doi: https://doi.org/10.1186/1742­2094­9­4

Rossignol, D. A., Frye, R. E. (2021). A Systematic Review and Meta­Analysis of Immunoglobulin G Abnormalities and the Therapeutic Use of Intravenous Immunoglobulins (IVIG) in Autism Spectrum Disorder. Journal of Personalized Medicine, 11 (6), 488. doi: https://doi.org/10.3390/jpm11060488

Baj, J., Sitarz, E., Forma, A., Wróblewska, K., Karakuła­Juchnowicz, H. (2020). Alterations in the Nervous System and Gut Microbiota after β­Hemolytic Streptococcus Group A Infection – Characteristics and Diagnostic Criteria of PANDAS Recognition. International Journal of Molecular Sciences, 21 (4), 1476. doi: https://doi.org/10.3390/ijms21041476

Luleyap, Hu., Onatoglu, D., Yilmaz, Mb., Alptekin, D., Tahiroglu, A., Cetiner, S. et al. (2013). Association between pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections disease and tumor necrosis factor­α gene−308 g/a, −850 c/t polymorphisms in 4­12­year­old children in Adana/Turkey. Indian Journal of Human Genetics, 19 (2), 196. doi: https://doi.org/10.4103/0971­6866.116116

Wang, Z., Ding, R., Wang, J. (2020). The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta­Analysis. Nutrients, 13 (1), 86. doi: https://doi.org/10.3390/nu13010086

Yektaş, Ç., Alpay, M., Tufan, A. E. (2019). Comparison of serum B12, folate and homocysteine concentrations in children with autism spectrum disorder or attention deficit hyperactivity disorder and healthy controls. Neuropsychiatric Disease and Treatment, 15, 2213–2219. doi: https://doi.org/10.2147/ndt.s212361

Furlano, R. I., Anthony, A., Day, R., Brown, A., McGarvey, L., Thomson, M. A. et al. (2001). Colonic CD8 and γδ T­cell infiltration with epithelial damage in children with autism. The Journal of Pediatrics, 138 (3), 366–372. doi: https://doi.org/10.1067/mpd.2001.111323

Deepmala, Slattery, J., Kumar, N., Delhey, L., Berk, M., Dean, O., Spielholz, C., Frye, R. (2015). Clinical trials of N­acetylcysteine in psychiatry and neurology: A systematic review. Neuroscience & Biobehavioral Reviews, 55, 294–321. doi: https://doi.org/10.1016/j.neubiorev.2015.04.015

Warren, R. P., Foster, A., Margaretten, N. C. (1987). Reduced Natural Killer Cell Activity in Autism. Journal of the American Academy of Child & Adolescent Psychiatry, 26 (3), 333–335. doi: https://doi.org/10.1097/00004583­198705000­00008

Warren, R. P., Yonk, L. J., Burger, R. A., Cole, P., Odell, J. D., Warren, W. L. et al. (1990). Deficiency of Suppressor­Inducer (Cd4+Cd45ra+) T Cells in Autism. Immunological Investigations, 19 (3), 245–251. doi: https://doi.org/10.3109/08820139009041839

Cabanlit, M., Wills, S., Goines, P., Ashwood, P., Van De Water, J. (2007). Brain­Specific Autoantibodies in the Plasma of Subjects with Autistic Spectrum Disorder. Annals of the New York Academy of Sciences, 1107 (1), 92–103. doi: https://doi.org/10.1196/annals.1381.010

Frye, R. E., Sequeira, J. M., Quadros, E. V., James, S. J., Rossignol, D. A. (2012). Cerebral folate receptor autoantibodies in autism spectrum disorder. Molecular Psychiatry, 18 (3), 369–381. doi: https://doi.org/10.1038/mp.2011.175

Binstock, T. (2001). Intra­monocyte pathogens delineate autism subgroups. Medical Hypotheses, 56 (4), 523–531. doi: https://doi.org/10.1054/mehy.2000.1247

Crawley, J. N., Heyer, W.­D., LaSalle, J. M. (2016). Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends in Genetics, 32 (3), 139–146. doi: https://doi.org/10.1016/j.tig.2016.01.001

McDougle, C. J., Landino, S. M., Vahabzadeh, A., O'Rourke, J., Zurcher, N. R., Finger, B. C. et al. (2015). Toward an immune­mediated subtype of autism spectrum disorder. Brain Research, 1617, 72–92. doi: https://doi.org/10.1016/j.brainres.2014.09.048

Maltsev, D. (2022). Rezultaty otsinky imunnoho statusu u ditei z ras: imunodefitsyt, asotsiiovanyi z henetychnym defitsytom folatnoho tsyklu. Immunology and Allergy: Science and Practice, 4, 5–22. doi: https://doi.org/10.37321/immunology.2021.4­01

Careaga, M., Rogers, S., Hansen, R. L., Amaral, D. G., Van de Water, J., Ashwood, P. (2017). Immune Endophenotypes in Children With Autism Spectrum Disorder. Biological Psychiatry, 81 (5), 434–441. doi: https://doi.org/10.1016/j.biopsych.2015.08.036

Maltsev, D. (2020). Features of folate cycle disorders in children with ASD. Bangladesh Journal of Medical Science, 19 (4), 737–742. doi: https://doi.org/10.3329/bjms.v19i4.46634

Mauracher, A. A., Gujer, E., Bachmann, L. M., Güsewell, S., Pachlopnik Schmid, J. (2021). Patterns of Immune Dysregulation in Primary Immunodeficiencies: A Systematic Review. The Journal of Allergy and Clinical Immunology: In Practice, 9 (2), 792­802.e10. doi: https://doi.org/10.1016/j.jaip.2020.10.057

Isung, J., Williams, K., Isomura, K., Gromark, C., Hesselmark, E., Lichtenstein, P. et al. (2020). Association of Primary Humoral Immunodeficiencies With Psychiatric Disorders and Suicidal Behavior and the Role of Autoimmune Diseases. JAMA Psychiatry, 77 (11), 1147. doi: https://doi.org/10.1001/jamapsychiatry.2020.1260

Maltsev, D. (2021). The results of the study of the microbial spectrum in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Men's Health, Gender and Psychosomatic Medicine, 1­2, 26–39. doi: https://doi.org/10.37321/ujmh.2021.1­2­04

Chen, N., Zhang, X., Zheng, K., Zhu, L., Zhang, N., Liu, L. et al. (2019). Increased risk of group B Streptococcus causing meningitis in infants with mannose­binding lectin deficiency. Clinical Microbiology and Infection, 25 (3), 384.e1­384.e3. doi: https://doi.org/10.1016/j.cmi.2018.10.003

Asogwa, K., Buabeng, K., Kaur, A. (2017). Psychosis in a 15­Year­Old Female with Herpes Simplex Encephalitis in a Background of Mannose­Binding Lecithin Deficiency. Case Reports in Psychiatry, 2017, 1–5. doi: https://doi.org/10.1155/2017/1429847

Bagheri­Hosseinabadi, Z., Imani, D., Yousefi, H., Abbasifard, M. (2020). MTHFR gene polymorphisms and susceptibility to rheumatoid arthritis: a meta­analysis based on 16 studies. Clinical Rheumatology, 39 (8), 2267–2279. doi: https://doi.org/10.1007/s10067­020­05031­5

Maltsev, D. V. (2021). The results of the search for laboratory signs of autoimmune reactions to cerebral and extracerebral autoantigens in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Medical Science of Ukraine (MSU), 17 (3), 22–37. doi: https://doi.org/10.32345/2664­4738.3.2021.03

Carlus, S. J., Abdallah, A. M., Bhaskar, L. V. et al. (2016). The MTHFR C677T polymorphism is associated with mitral valve rheumatic heart disease. Eur. Rev. Med. Pharmacol Sci., 20 (1) 109–114.

Yigit, S., Inanir, A., Tural, S., Filiz, B., Tekcan, A. (2014). The effect of IL­4 and MTHFR gene variants in ankylosing spondylitis. Zeitschrift Für Rheumatologie, 74 (1), 60–66. doi: https://doi.org/10.1007/s00393­014­1403­2

Song, G. G., Bae, S.­C., Seo, Y. H., Kim, J.­H., Choi, S. J., Ji, J. D., Lee, Y. H. (2014). Meta­analysis of functional MBL polymorphisms. Zeitschrift Für Rheumatologie, 73 (7), 657–664. doi: https://doi.org/10.1007/s00393­014­1408­x

Glesse, N., Monticielo, O. A., Mattevi, V. S. et al. (2011). Association of mannose­binding lectin 2 gene polymorphic variants with susceptibility and clinical progression in systemic lupus erythematosus. Clin. Exp. Rheumatol, 29 (6), 983–990.

Schafranski, M. D., Stier, A., Nisihara, R., Messias­Reason, I. J. T. (2004). Significantly increased levels of mannose­binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clinical and Experimental Immunology, 138 (3), 521–525. doi: https://doi.org/10.1111/j.1365­2249.2004.02645.x

Aydin, S. Z., Atagunduz, P., Inanc, N. et al. (2007). Mannose binding lectin levels in spondyloarthropathies. J. Rheumatol, 34 (10), 2075–2077.

Li, M., Tang, Y., Zhao, E. Y. et al. (2021). Relationship between MTHFR gene polymorphism and susceptibility to bronchial asthma and glucocorticoid efficacy in children. Zhongguo Dang Dai Er Ke Za Zhi, 23 (8), 802–808. doi: https://doi.org/10.7499/j.issn.1008­8830.2105035

Wang, T., Zhang, H.­P., Zhang, X., Liang, Z.­A., Ji, Y.­L., Wang, G. (2015). Is Folate Status a Risk Factor for Asthma or Other Allergic Diseases? Allergy, Asthma & Immunology Research, 7 (6), 538. doi: https://doi.org/10.4168/aair.2015.7.6.538

Birbian, N., Singh, J., Jindal, S. K., Joshi, A., Batra, N., Singla, N. (2012). Association of the Wild­Type A/A Genotype of MBL2 Codon 54 with Asthma in a North Indian Population. Disease Markers, 32 (5), 301–308. doi: https://doi.org/10.1155/2012/757302

El­Hadidy, M. A., Abdeen, H. M., Abd El­Aziz, S. M., Al­Harrass, M. (2014). MTHFR Gene Polymorphism and Age of Onset of Schizophrenia and Bipolar Disorder. BioMed Research International, 2014, 1–9. doi: https://doi.org/10.1155/2014/318483

Peerbooms, O. L. J., van Os, J., Drukker, M., Kenis, G., Hoogveld, L., de Hert, M. et al. (2011). Meta­analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain, Behavior, and Immunity, 25 (8), 1530–1543. doi: https://doi.org/10.1016/j.bbi.2010.12.006

Foldager, L., Köhler, O., Steffensen, R., Thiel, S., Kristensen, A. S., Jensenius, J. C., Mors, O. (2014). Bipolar and panic disorders may be associated with hereditary defects in the innate immune system. Journal of Affective Disorders, 164, 148–154. doi: https://doi.org/10.1016/j.jad.2014.04.017

Peng, Q., Lao, X., Huang, X., Qin, X., Li, S., Zeng, Z. (2015). The MTHFR C677T polymorphism contributes to increased risk of Alzheimer's Disease: Evidence based on 40 case­control studies. Neuroscience Letters, 586, 36–42. doi: https://doi.org/10.1016/j.neulet.2014.11.049

Sjölander, A., Minthon, L., Nuytinck, L., Vanmechelen, E., Blennow, K., Nilsson, S. (2013). Functional mannose­binding lectin haplotype variants are associated with Alzheimer's disease. Journal of Alzheimer's Disease, 35 (1), 121–127. doi: https://doi.org/10.3233/jad­122044

Chen, F., Wen, T., Lv, Q., Liu, F. (2019). Associations between Folate Metabolism Enzyme Polymorphisms and Lung Cancer: A Meta­Analysis. Nutrition and Cancer, 72 (7), 1211–1218. doi: https://doi.org/10.1080/01635581.2019.1677924

Pine, S. R., Mechanic, L. E., Ambs, S., Bowman, E. D., Chanock, S. J., Loffredo, C. et al. (2007). Lung Cancer Survival and Functional Polymorphisms in MBL2, an Innate­Immunity Gene. JNCI: Journal of the National Cancer Institute, 99 (18), 1401–1409. doi: https://doi.org/10.1093/jnci/djm128

Russo, A. (2009). Low serum myeloperoxidase in autistic children with gastrointestinal disease. Clinical and Experimental Gastroenterology, 85. doi: https://doi.org/10.2147/ceg.s6051

Kovacs, M., Papp, M., Lakatos, P. L., Jacobsen, S., Nemes, E., Polgar, M. et al. (2013). Low mannose­binding lectin (MBL) is associated with paediatric inflammatory bowel diseases and ileal involvement in patients with Crohn disease. Journal of Crohn's and Colitis, 7 (2), 134–141. doi: https://doi.org/10.1016/j.crohns.2012.03.008

Rai, V., Yadav, U., Kumar, P., Yadav, S. K., Mishra, O. P. (2014). Maternal Methylenetetrahydrofolate Reductase C677T Polymorphism and Down Syndrome Risk: A Meta­Analysis from 34 Studies. PLoS ONE, 9 (9), e108552. doi: https://doi.org/10.1371/journal.pone.0108552

Nisihara, R. M., Utiyama, S. R. R., Oliveira, N. P., Messias­Reason, I. J. (2010). Mannan­binding lectin deficiency increases the risk of recurrent infections in children with Down's syndrome. Human Immunology, 71 (1), 63–66. doi: https://doi.org/10.1016/j.humimm.2009.09.361

Borges, M. C., Hartwig, F. P., Oliveira, I. O., Horta, B. L. (2015). Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study. The American Journal of Clinical Nutrition, 103 (1), 39–49. doi: https://doi.org/10.3945/ajcn.115.116038

Madsen, H. O., Videm, V., Svejgaard, A., Svennevig, J. L., Garred, P. (1998). Association of mannose­binding­lectin deficiency with severe atherosclerosis. The Lancet, 352 (9132), 959–960. doi: https://doi.org/10.1016/s0140­6736(05)61513­9

Chen, H., Yang, X Lu, M. (2015). Methylenetetrahydrofolate reductase gene polymorphisms and recurrent pregnancy loss in China: a systematic review and meta­analysis. Archives of Gynecology and Obstetrics, 293 (2), 283–290. doi: https://doi.org/10.1007/s00404­015­3894­8

Christiansen, O. B., Kilpatrick, D. C., Souter, V. et al. (1999). Mannan­Binding Lectin Deficiency is Associated with Unexplained Recurrent Miscarriage. Scandinavian Journal of Immunology, 49 (2), 193–196. doi: https://doi.org/10.1046/j.1365­3083.1999.00473.x

Yang, Y., Luo, Y., Yuan, J., Tang, Y., Xiong, L., Xu, M. et al. (2015). Association between maternal, fetal and paternal MTHFR gene C677T and A1298C polymorphisms and risk of recurrent pregnancy loss: a comprehensive evaluation. Archives of Gynecology and Obstetrics, 293 (6), 1197–1211. doi: https://doi.org/10.1007/s00404­015­3944­2

Hultström, M., Frithiof, R., Eriksson, O., Persson, B., Lipcsey, M., Ekdahl, K. N., Nilsson, B. (2020). Mannose­Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID­19 Patients. Thrombosis and Haemostasis, 120 (12), 1720–1724. doi: https://doi.org/10.1055/s­0040­1715835

Maltsev, D., Stefanyshyn, V. (2021). Efficacy of combined immunotherapy with propes and inflamafertin in selective deficiency of nk and nkt cells in children with autism spectrum disorders associated with genetic deficiency of the folate cycle. Romanian Journal of Neurology, 20 (2), 211–216. doi: https://doi.org/10.37897/rjn.2021.2.13

Nicolson, G. L., Gan, R., Nicolson, N. L., Haier, J. (2007). Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus­6 coinfections in the blood of patients with autistic spectrum disorders. Journal of Neuroscience Research, 85 (5), 1143–1148. doi: https://doi.org/10.1002/jnr.21203

Valayi, S., Eftekharian, M. M., Taheri, M., Alikhani, M. Y. (2018). Evaluation of antibodies to cytomegalovirus and Epstein­Barr virus in patients with autism spectrum disorder. Human Antibodies, 26 (3), 165–169. doi: https://doi.org/10.3233/hab­180335

Kuhn, M., Grave, S., Bransfield, R., Harris, S. (2012). Long term antibiotic therapy may be an effective treatment for children co­morbid with Lyme disease and Autism Spectrum Disorder. Medical Hypotheses, 78 (5), 606–615. doi: https://doi.org/10.1016/j.mehy.2012.01.037

Hughes, H. K., Ashwood, P. (2018). Anti­Candida albicans IgG Antibodies in Children With Autism Spectrum Disorders. Frontiers in Psychiatry, 9. doi: https://doi.org/10.3389/fpsyt.2018.00627

Nayeri, T., Sarvi, S., Moosazadeh, M., Hosseininejad, Z., Sharif, M., Amouei, A., Daryani, A. (2020). Relationship between toxoplasmosis and autism: A systematic review and meta­analysis. Microbial Pathogenesis, 147, 104434. doi: https://doi.org/10.1016/j.micpath.2020.104434

Ghaziuddin, M., Al­Khouri, I., Ghaziuddin, N. (2002). Autistic symptoms following herpes encephalitis. European Child & Adolescent Psychiatry, 11 (3), 142–146. doi: https://doi.org/10.1007/s00787­002­0271­5

Sakamoto, A., Moriuchi, H., Matsuzaki, J., Motoyama, K., Moriuchi, M. (2015). Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain and Development, 37 (2), 200–205. doi: https://doi.org/10.1016/j.braindev.2014.03.016

Monge­Galindo, L., Pérez­Delgado, R., López­Pisón, J. et al. (2010). Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19­year period. Rev. Neurol., 50 (6), 341–348.

Wipfler, P., Dunn, N., Beiki, O., Trinka, E., Fogdell­Hahn, A. (2018). The Viral Hypothesis of Mesial Temporal Lobe Epilepsy – Is Human Herpes Virus­6 the Missing Link? A systematic review and meta­analysis. Seizure, 54, 33–40. doi: https://doi.org/10.1016/j.seizure.2017.11.015

Harberts, E., Yao, K., Wohler, J. E., Maric, D., Ohayon, J., Henkin, R., Jacobson, S. (2011). Human herpesvirus­6 entry into the central nervous system through the olfactory pathway. Proceedings of the National Academy of Sciences, 108 (33), 13734–13739. doi: https://doi.org/10.1073/pnas.1105143108

Lecointe, D., Fabre, M., Habes, D. et al. (2000). Macrophage activation syndrome in primary human herpes virus­6 infection: a rare condition after liver transplantation in infants. Gastroenterol. Clin. Biol., 24 (12), 1227–1228.

Li, Y., Viscidi, R. P., Kannan, G., McFarland, R., Pletnikov, M. V., Severance, E. G. et al. (2018). Chronic Toxoplasma gondii Infection Induces Anti­ N ­Methyl­ d ­Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology. Infection and Immunity, 86 (10). doi: https://doi.org/10.1128/iai.00398­18

Venâncio, P., Brito, M. J., Pereira, G., Vieira, J. P. (2014). Anti­N­methyl­D­aspartate Receptor Encephalitis with Positive Serum Antithyroid Antibodies, IgM Antibodies Against Mycoplasma pneumoniae and Human Herpesvirus 7 PCR in the CSF. Pediatric Infectious Disease Journal, 33 (8), 882–883. doi: https://doi.org/10.1097/inf.0000000000000408

Singh, V. K., Warren, R. P., Odell, J. D., Warren, W. L., Cole, P. (1993). Antibodies to Myelin Basic Protein in Children with Autistic Behavior. Brain, Behavior, and Immunity, 7(1), 97–103. doi: https://doi.org/10.1006/brbi.1993.1010

Kong, X., Liu, J., Cetinbas, M., Sadreyev, R., Koh, M., Huang, H., et al. (2019). New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutrients, 11 (9), 2128. doi: https://doi.org/10.3390/nu11092128

Snider, L. A., Lougee, L., Slattery, M., Grant, P., Swedo, S. E. (2005). Antibiotic prophylaxis with azithromycin or penicillin for childhood­onset neuropsychiatric disorders. Biological Psychiatry, 57 (7), 788–792. doi: https://doi.org/10.1016/j.biopsych.2004.12.035

Brimberg, L., Sadiq, A., Gregersen, P. K., Diamond, B. (2013). Brain­reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Molecular Psychiatry, 18 (11), 1171–1177. doi: https://doi.org/10.1038/mp.2013.101

Kern, J. K., Geier, D. A., Mehta, J. A., Homme, K. G., Geier, M. R. (2020). Mercury as a hapten: A review of the role of toxicant­induced brain autoantibodies in autism and possible treatment considerations. Journal of Trace Elements in Medicine and Biology, 62, 126504. doi: https://doi.org/10.1016/j.jtemb.2020.126504

Mostafa, G. A., El­Sherif, D. F., Al­Ayadhi, L. Y. (2014). Systemic auto­antibodies in children with autism. Journal of Neuroimmunology, 272 (1­2), 94–98. doi: https://doi.org/10.1016/j.jneuroim.2014.04.011

Whiteley, P., Marlow, B., Kapoor, R. R., Blagojevic­Stokic, N., Sala, R. (2021). Autoimmune Encephalitis and Autism Spectrum Disorder. Frontiers in Psychiatry, 12. doi: https://doi.org/10.3389/fpsyt.2021.775017

Maltsev, D. V. (2021). Efficacy of Rituximab in Autism Spectrum Disorders Associated with Genetic Folate Cycle Deficiency with Signs of Antineuronal Autoimmunity. Psychotherapy and Clinical Psychologythis, 12 (3), 472–486. doi: https://doi.org/10.34883/pi.2021.12.3.010

Masi, A., Quintana, D. S., Glozier, N., Lloyd, A. R., Hickie, I. B., Guastella, A. J. (2014). Cytokine aberrations in autism spectrum disorder: a systematic review and meta­analysis. Molecular Psychiatry, 20 (4), 440–446. doi: https://doi.org/10.1038/mp.2014.59

Saghazadeh, A., Ataeinia, B., Keynejad, K., Abdolalizadeh, A., Hirbod­Mobarakeh, A., Rezaei, N. (2019). A meta­analysis of pro­inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. Journal of Psychiatric Research, 115, 90–102. doi: https://doi.org/10.1016/j.jpsychires.2019.05.019

Jyonouchi, H., Geng, L., Ruby, A., Zimmerman­Bier, B. (2005). Dysregulated Innate Immune Responses in Young Children with Autism Spectrum Disorders: Their Relationship to Gastrointestinal Symptoms and Dietary Intervention. Neuropsychobiology, 51 (2), 77–85. doi: https://doi.org/10.1159/000084164

Thom, R. P., Keary, C. J., Palumbo, M. L., Ravichandran, C. T., Mullett, J. E., Hazen, E. P. et al. (2019). Beyond the brain: A multi­system inflammatory subtype of autism spectrum disorder. Psychopharmacology, 236 (10), 3045–3061. doi: https://doi.org/10.1007/s00213­019­05280­6

Maltsev, D. (2021). Evaluation of markers of inflammation and neuronal damage in patients with autism spectrum disorders associated with genetic deficiency of the folate cycle. Immunology and Allergy: Science and Practice, 3, 31–39. doi: https://doi.org/10.37321/immunology.2021.3­04

Lv, M., Zhang, H., Shu, Y., Chen, S., Hu, Y., Zhou, M. (2016). The neonatal levels of TSB, NSE and CK­BB in autism spectrum disorder from Southern China. Translational Neuroscience, 7 (1), 6–11. doi: https://doi.org/10.1515/tnsci­2016­0002

Zheng, Z., Zheng, P., Zou, X. (2020). Peripheral Blood S100B Levels in Autism Spectrum Disorder: A Systematic Review and Meta­Analysis. Journal of Autism and Developmental Disorders, 51 (8), 2569–2577. doi: https://doi.org/10.1007/s10803­020­04710­1

Maltsev, D., Natrus, L. (2020). The effectiveness of infliximab in autism spectrum disorders associated with folate cycle genetic deficiency. Psychiatry, Psychotherapy and Clinical Psychologythis, 3, 583–594. doi: https://doi.org/10.34883/pi.2020.11.3.015

Xu, G., Snetselaar, L. G., Jing, J., Liu, B., Strathearn, L., Bao, W. (2018). Association of Food Allergy and Other Allergic Conditions With Autism Spectrum Disorder in Children. JAMA Network Open, 1 (2), e180279. doi: https://doi.org/10.1001/jamanetworkopen.2018.0279

Theoharides, T. C., Tsilioni, I., Patel, A. B., Doyle, R. (2016). Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Translational Psychiatry, 6 (6), e844–e844. doi: https://doi.org/10.1038/tp.2016.77

Theoharides, T. C. (2013). Is a Subtype of Autism an Allergy of the Brain? Clinical Therapeutics, 35 (5), 584–591. doi: https://doi.org/10.1016/j.clinthera.2013.04.009

Cao, L.­H., He, H.­J., Zhao, Y.­Y., Wang, Z.­Z., Jia, X.­Y., Srivastava, K. et al. (2022). Food Allergy­Induced Autism­Like Behavior is Associated with Gut Microbiota and Brain mTOR Signaling. Journal of Asthma and Allergy, Volume 15, 645–664. doi: https://doi.org/10.2147/jaa.s348609

Yu, Y., Huang, J., Chen, X., Fu, J., Wang, X., Pu, L. et al. (2022). Efficacy and Safety of Diet Therapies in Children With Autism Spectrum Disorder: A Systematic Literature Review and Meta­Analysis. Frontiers in Neurology, 13. doi: https://doi.org/10.3389/fneur.2022.844117

Fiorentino, M., Sapone, A., Senger, S., Camhi, S. S., Kadzielski, S. M., Buie, T. M. et al. (2016). Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 7 (1). doi: https://doi.org/10.1186/s13229­016­0110­z

Azhari, A., Azizan, F., Esposito, G. (2018). A systematic review of gut­immune­brain mechanisms in Autism Spectrum Disorder. Developmental Psychobiology, 61(5), 752–771. doi: https://doi.org/10.1002/dev.21803

Bouboulis, D., Mast, P. (2016). Infection­Induced Autoimmune Encephalopathy: Treatment with Intravenous Immune Globulin Therapy. A Report of Six Patients. International Journal of Neurology Research, 2 (1), 256–258. doi: https://doi.org/10.17554/j.issn.2313­5611.2016.02.44

Molina-López, J., Leiva-García, B., Planells, E., Planells, P. (2021). Food selectivity, nutritional inadequacies, and mealtime behavioral problems in children with autism spectrum disorder compared to neurotypical children. International Journal of Eating Disorders, 54 (12), 2155–2166. doi: https://doi.org/10.1002/eat.23631

Minshew, N. J., Williams, D. L. (2007). The New Neurobiology of Autism. Archives of Neurology, 64 (7), 945. doi: https://doi.org/10.1001/archneur.64.7.945

Hardan, A. Y., Fung, L. K., Frazier, T., Berquist, S. W., Minshew, N. J., Keshavan, M. S., Stanley, J. A. (2016). A proton spectroscopy study of white matter in children with autism. Progress in Neuro­Psychopharmacology and Biological Psychiatry, 66, 48–53. doi: https://doi.org/10.1016/j.pnpbp.2015.11.005

Marseglia, L. M., Nicotera, A., Salpietro, V., Giaimo, E., Cardile, G., Bonsignore, M. et al. (2015). Hyperhomocysteinemia and MTHFR Polymorphisms as Antenatal Risk Factors of White Matter Abnormalities in Two Cohorts of Late Preterm and Full Term Newborns. Oxidative Medicine and Cellular Longevity, 2015, 1–8. doi: https://doi.org/10.1155/2015/543134

Pavone, V., Praticò, A. D., Parano, E., Pavone, P., Verrotti, A., Falsaperla, R. (2012). Spine and brain malformations in a patient obligate carrier of MTHFR with autism and mental retardation. Clinical Neurology and Neurosurgery, 114 (9), 1280–1282. doi: https://doi.org/10.1016/j.clineuro.2012.03.008

Maltsev, D. V. (2021). Neuroradiological signs of encephalopathy in children with autism spectrum disorders associated with genetic folate deficiency. Ukrainian Neurological Journal, 3–4, 16–30. doi: https://doi.org/10.30978/unj2021­3­16

González Toro, M. C., Jadraque Rodríguez, R., Sempere Pérez, Á., Martínez Pastor, P., Jover Cerdá, J., Gómez Gosálvez, F. A. (2013). Encefalitis antirreceptor de NMDA: dos casos pediátricos. Revista de Neurología, 57 (11), 504. doi: https://doi.org/10.33588/rn.5711.2013272

Pinillos Pisón, R., Llorente Cereza, M. T., López Pisón, J., Pérez Delgado, R., Lafuente Hidalgo, M., Martínez Sapiñá, A., Peña Segura, J. L. (2009). Infección congénita por citomegalovirus. Revisión de nuestra experiencia diagnóstica de 18 años. Revista de Neurología, 48 (07), 349. doi: https://doi.org/10.33588/rn.4807.2008391

Maltsev, D. V. (2022). The results of a retrospective analysis of the use of normal intravenous human immunoglobulin in high dose for the treatment of immune­dependent encephalopathy with a clinical picture of autism spectrum disorders in children with genetic deficiency of the folate cycle. International Neurological Journal, 17 (8), 26–38. doi: https://doi.org/10.22141/2224­0713.17.8.2021.250818

Perlmutter, S. J., Leitman, S. F., Garvey, M. A., Hamburger, S., Feldman, E., Leonard, H. L., Swedo, S. E. (1999). Therapeutic plasma exchange and intravenous immunoglobulin for obsessive­compulsive disorder and tic disorders in childhood. The Lancet, 354 (9185), 1153–1158. doi: https://doi.org/10.1016/s0140­6736(98)12297­3

Slingsby, B., Yatchmink, Y., Goldberg, A. (2017). Typical Skin Injuries in Children With Autism Spectrum Disorder. Clinical Pediatrics, 56 (10), 942–946. doi: https://doi.org/10.1177/0009922817705187

Bradstreet, J. J., Smith, S., Baral, M., Rossignol, D. A. (2010). Biomarker­guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder. Altern Med Rev., 15 (1), 15–32.

Liu, H., Talalay, P., W. Fahey, J. (2016). Biomarker­Guided Strategy for Treatment of Autism Spectrum Disorder (ASD). CNS & Neurological Disorders ­ Drug Targets, 15 (5), 602–613. doi: https://doi.org/10.2174/1871527315666160413120414

Frye, R. E., Rose, S., Boles, R. G., Rossignol, D. A. (2022). A Personalized Approach to Evaluating and Treating Autism Spectrum Disorder. Journal of Personalized Medicine, 12 (2), 147. doi: https://doi.org/10.3390/jpm12020147

Kuss, D. J., Lopez­Fernandez, O. (2016). Internet addiction and problematic Internet use: A systematic review of clinical research. World Journal of Psychiatry, 6 (1), 143–176. doi: https://doi.org/10.5498/wjp.v6.i1.143

Petrosyan, A. (2023). Internet and social media users in the world 2023. Statista. Available at: https://www.statista.com/statistics/617136/digital­population­worldwide/

Bindé, J., Matsuura, K. (Eds.) (2005). Towards knowledge societies. UNESCO Pub, 237.

Yuryeva, L. N. (2014). Kompiuternaia zavisimost­addiktciia obshchestva, osnovannogo na znaniiakh. Tiumenskii Meditcinskii Zhurnal, 16 (1), 54–55.

Yuryeva, L. N. (2015). Formirovanie kiberkultury: Ot klinopisi k Internetu. Novosti Meditciny i Farmatcii, 15 (558), 20–21.

Maruta, N. O., Yuryeva, L. M. (Ed.) (2022). Okhorona psykhichnoho zdorov'ia. Strokov D. V.

Young, K., Pistner, M., O'Mara, J., Buchanan, J. (1999). Cyber Disorders: The Mental Health Concern for the New Millennium. CyberPsychology & Behavior, 2 (5), 475–479. doi: https://doi.org/10.1089/cpb.1999.2.475

Orzack, M. H. (1999). Cyberkids: Overdosing on computers? FCD Update, 4, 1.

Chakraborty, K., Basu, D., Vijaya Kumar, K. G. (2010). Internet addiction: Consensus, controversies, and the way ahead. East Asian Archives of Psychiatry, 20 (3), 123–132.

Weinstein, A. (2015). Comorbidity of Internet addiction with other psychiatric conditions. Journal of Behavioral Addictions, 4 (S1), 43–44.

Christakis, D. A., Moreno, M. M., Jelenchick, L., Myaing, M. T., Zhou, C. (2011). Problematic internet usage in US college students: a pilot study. BMC Medicine, 9 (1). doi: https://doi.org/10.1186/1741­7015­9­77

Poli, R., Agrimi, E. (2011). Internet addiction disorder: Prevalence in an Italian student population. Nordic Journal of Psychiatry, 66 (1), 55–59. doi: https://doi.org/10.3109/08039488.2011.605169

Park, S., Jeon, H. J., Bae, J. N., Seong, S. J., Hong, J. P. (2017). Prevalence and Psychiatric Comorbidities of Internet Addiction in a Nationwide Sample of Korean Adults. Psychiatry Investigation, 14 (6), 879–882. doi: https://doi.org/10.4306/pi.2017.14.6.879

Xu, J., Shen, L., Yan, C., Hu, H., Yang, F., Wang, L. et al. (2012). Personal characteristics related to the risk of adolescent internet addiction: a survey in Shanghai, China. BMC Public Health, 12 (1). doi: https://doi.org/10.1186/1471­2458­12­1106

Starcevic, V. (2013). Is Internet addiction a useful concept? Australian & New Zealand Journal of Psychiatry, 47 (1), 16–19. doi: https://doi.org/10.1177/0004867412461693

Lin, X., Su, W., Potenza, M. N. (2018). Development of an Online and Offline Integration Hypothesis for Healthy Internet Use: Theory and Preliminary Evidence. Frontiers in Psychology, 9. doi: https://doi.org/10.3389/fpsyg.2018.00492

Marks, I. (1990). Behavioural (non­chemical) addictions. Addiction, 85 (11), 1389–1394. doi: https://doi.org/10.1111/j.1360­0443.1990.tb01618.x

Goldberg, I. (1996). Internet addiction disorder. CyberPsychol. Behavior, 3 (4), 403–412.

Young, K. S. (1998). Internet Addiction: The Emergence of a New Clinical Disorder. CyberPsychology & Behavior, 1 (3), 237–244. doi: https://doi.org/10.1089/cpb.1998.1.237

Davis, R. A. (2001). A cognitive­behavioral model of pathological Internet use. Computers in Human Behavior, 17 (2), 187–195. doi: https://doi.org/10.1016/s0747­5632(00)00041­8

Hall, A. S., Parsons, J. (2001). Internet addiction: College student case study using best practices in cognitive behavior therapy. Journal of Mental Health Counseling, 23 (4), 312–328.

Sánchez Palacios, B. I., Zambrano Vera, G. (2020). La ciberadicción en el rendimiento académico de los estudiantes de educación básica superior de la escuela Cicerón Robles Velásquez, 2019. Caribeña de Ciencias Sociales, agosto, Article agosto. Available at: https://www.eumed.net/rev/caribe/2020/08/ciberadiccion.html

Grant, J. E., Potenza, M. N., Weinstein, A., Gorelick, D. A. (2010). Introduction to Behavioral Addictions. The American Journal of Drug and Alcohol Abuse, 36 (5), 233–241. doi: https://doi.org/10.3109/00952990.2010.491884

Beard, K. W., Wolf, E. M. (2001). Modification in the Proposed Diagnostic Criteria for Internet Addiction. CyberPsychology & Behavior, 4 (3), 377–383. doi: https://doi.org/10.1089/109493101300210286

Fisoun, V., Floros, G., Siomos, K., Geroukalis, D., Navridis, K. (2012). Internet Addiction as an Important Predictor in Early Detection of Adolescent Drug Use Experience – Implications for Research and Practice. Journal of Addiction Medicine, 6 (1), 77–84. doi: https://doi.org/10.1097/adm.0b013e318233d637

Lee, Y. S., Han, D. H., Yang, K. C., Daniels, M. A., Na, C., Kee, B. S., Renshaw, P. F. (2008). Depression like characteristics of 5HTTLPR polymorphism and temperament in excessive internet users. Journal of Affective Disorders, 109 (1­2), 165–169. doi: https://doi.org/10.1016/j.jad.2007.10.020

Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., Lei, H. (2012). Abnormal White Matter Integrity in Adolescents with Internet Addiction Disorder: A Tract­Based Spatial Statistics Study. PLoS ONE, 7 (1), e30253. doi: https://doi.org/10.1371/journal.pone.0030253

Zhou, Y., Lin, F., Du, Y., Qin, L., Zhao, Z., Xu, J., Lei, H. (2011). Gray matter abnormalities in Internet addiction: A voxel­based morphometry study. European Journal of Radiology, 79 (1), 92–95. doi: https://doi.org/10.1016/j.ejrad.2009.10.025

Brand, M., Young, K. S., Laier, C., Wölfling, K., Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet­use disorders: An Interaction of Person­Affect­Cognition­Execution (I­PACE) model. Neuroscience & Biobehavioral Reviews, 71, 252–266. doi: https://doi.org/10.1016/j.neubiorev.2016.08.033

Shaikh, B., Jumain, R. S. A. (2014). Grounded Theory of Consumer Loyalty, a Perspective through Video Game Addiction. International Journal of Economics and Management Engineering, 8 (5), 1542–1544.

Weinstein, A., Curtiss Feder, L., Rosenberg, K. P., Dannon, P.; Rosenberg, K. P., Feder, L. C. (Eds.) (2014). Chapter 5 – Internet Addiction Disorder: Overview and Controversies. Behavioral Addictions. Academic Press, 99–117. doi: https://doi.org/10.1016/B978­0­12­407724­9.00005­7

Carli, V., Durkee, T., Wasserman, D., Hadlaczky, G., Despalins, R., Kramarz, E. et al. (2012). The Association between Pathological Internet Use and Comorbid Psychopathology: A Systematic Review. Psychopathology, 46 (1), 1–13. doi: https://doi.org/10.1159/000337971

Van Rooij, A. J., Kuss, D. J., Griffiths, M. D., Shorter, G. W., Schoenmakers, T. M., van de Mheen, D. (2014). The (co­)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents. Journal of Behavioral Addictions, 3 (3), 157–165. doi: https://doi.org/10.1556/jba.3.2014.013

Rücker, J., Akre, C., Berchtold, A., Suris, J.­C. (2015). Problematic Internet use is associated with substance use in young adolescents. Acta Paediatrica, 104 (5), 504–507. doi: https://doi.org/10.1111/apa.12971

Evren, C., Dalbudak, E., Evren, B., Demirci, A. C. (2014). High risk of Internet addiction and its relationship with lifetime substance use, psychological and behavioral problems among 10(th) grade adolescents. Psychiatria Danubina, 26 (4), 330–339.

Yen, C., Tang, T., Yen, J., Lin, H., Huang, C., Liu, S., Ko, C. (2008). Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. Journal of Adolescence, 32 (4), 863–873. doi: https://doi.org/10.1016/j.adolescence.2008.10.006

Recupero, P. R., Harms, S. E., Noble, J. M. (2008). Googling Suicide. The Journal of Clinical Psychiatry, 69 (6), 878–888. doi: https://doi.org/10.4088/jcp.v69n0601

Paik, A., Oh, D., Kim, D. (2014). A Case of Withdrawal Psychosis from Internet Addiction Disorder. Psychiatry Investigation, 11 (2), 207. doi: https://doi.org/10.4306/pi.2014.11.2.207

Dong, G., Lu, Q., Zhou, H., Zhao, X. (2011). Precursor or Sequela: Pathological Disorders in People with Internet Addiction Disorder. PLoS ONE, 6 (2), e14703. doi: https://doi.org/10.1371/journal.pone.0014703

Cho, S.­M., Sung, M.­J., Shin, K.­M., Lim, K. Y., Shin, Y.­M. (2012). Does Psychopathology in Childhood Predict Internet Addiction in Male Adolescents? Child Psychiatry & Human Development, 44 (4), 549–555. doi: https://doi.org/10.1007/s10578­012­0348­4

Zhou, J., Friedel, M., Rosmarin, D. H., Pirutinsky, S. (2023). Internet Addiction and the Treatment of Depression? A Prospective Naturalistic Outcome Study. Cyberpsychology, Behavior, and Social Networking, 26 (2), 121–126. doi: https://doi.org/10.1089/cyber.2022.0184

Xie, X., Cheng, H., Chen, Z. (2023). Anxiety predicts internet addiction, which predicts depression among male college students: A cross­lagged comparison by sex. Frontiers in Psychology, 13. doi: https://doi.org/10.3389/fpsyg.2022.1102066

Yuryeva, L. N., Bolbot, T. Yu. (2006). Kompiuternaia zavisimost: Formirovanie, diagnostika, kor rektciia i profilaktika. Porogi, 196.

Yuryeva, L. N., Bolbot, T. Yu., Nosov, S. H. (2004). Sluchai symptomatycheskoi kompiuternoi zavysymosty u patsyenta s orhanycheskym porazhenyem tsentralnoi nervnoi systemi. Arkhiv Psykhiatrii, 10 (3 (38)), 134–138.

Block, J. J. (2008). Issues for DSM­V: Internet Addiction. American Journal of Psychiatry, 165 (3), 306–307. doi: https://doi.org/10.1176/appi.ajp.2007.07101556

Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y., Li, M. (2010). Proposed diagnostic criteria for internet addiction. Addiction, 105 (3), 556–564. doi: https://doi.org/10.1111/j.1360­0443.2009.02828.x

Ko, C.­H., Yen, J.­Y., Chen, S.­H., Yang, M.­J., Lin, H.­C., Yen, C.­F. (2009). Proposed diagnostic criteria and the screening and diagnosing tool of Internet addiction in college students. Comprehensive Psychiatry, 50 (4), 378–384. https://doi.org/10.1016/j.comppsych.2007.05.019

Ko, C.­H., Yen, J.­Y., Chen, C.­C., Chen, S.­H., Yen, C.­F. (2005). Proposed Diagnostic Criteria of Internet Addiction for Adolescents. The Journal of Nervous and Mental Disease, 193 (11), 728–733. doi: https://doi.org/10.1097/01.nmd.0000185891.13719.54

ICD­11 for Mortality and Morbidity Statistics (2021). WHO. International classification of diseases. Available at: https://icd.who.int/browse11/l­m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f499894965

Nuller, Yu. L., Tsyrkyn, S. Yu. (Eds.) (1994). Mezhdunarodnaia klassyfykatsyia boleznei (10­i peresmotr). Klassyfykatsyia psykhycheskykh y povedencheskykh rasstroistv. Klynycheskye opysanyia y ukazanyia po dyahnostyke. Adys.

Diagnostic and Statistical Manual of Mental Disorders (2013). American Psychiatric Association. doi: https://doi.org/10.1176/appi.books.9780890425596

Laconi, S., Rodgers, R. F., Chabrol, H. (2014). The measurement of Internet addiction: A critical review of existing scales and their psychometric

Downloads

Published

March 23, 2023

How to Cite

Mamontov, I., Kramarenko, K., Tamm, T., Nepomniashchyi, V., Shakalova, O., Ryabushchenko, D., Yuryk, O., Anatychuk, L., Kobylianskyi, R., Yuryk, N., Yukhymenko, L., Khomenko, S., Iliukha, L., Maltsev, D., Yuryeva, L., & Shornikov, A. (2023). MODERN METHODS OF DIAGNOSING DISEASES. Kharkiv: TECHNOLOGY CENTER PC. https://doi.org/10.15587/978-617-7319-65-7