DYNAMIC PROCESSES IN TECHNOLOGICAL TECHNICAL SYSTEMS
Keywords:
Technical systems, Technical systems, technological media, technological media, grinding, grinding, sorting, sorting, mixing, mixing, compaction, compaction, cavitation, cavitation, models, models, continuous and discrete parameters, continuous and discrete parameters, force loads, force loads, stresses, stresses, deformations, deformations, energy, energy, synergetics, synergetics, vibration amplitude, vibration amplitude, vibration frequency, vibration frequency, laws of motion, laws of motionSynopsis
The monograph is devoted to the study of dynamic processes in technical systems for various technological purposes. A new approach and methodology is proposed for a systemic, synergistic approach, taking into account the influence of energy fields of physical and mechanical effects, transformation and inversion of types of energy action. Models and equations of motion of discrete and continuous dynamic systems, dispersed media in the spectrum of their processing are considered. Changes in the parameters of subsystems are revealed: working mediums, mechanical systems, the processes of their interaction are investigated on the basis of taking into account their stress-strain state. The processes of grinding, sorting, mixing, compaction of materials and media are considered. The intensification of physical and mechanical processes, methods and means of their creation was achieved by the systematization and complexity of approaches due to the joint consideration of the mutual influence of the internal properties of subsystems. The processes of material processing by superresonant, subresonant and multi-mode parameters are investigated. Methods for determining effective parameters and modes of their operation are proposed. The processes of grinding, sorting, mixing, compaction of the processing medium in the field of vibration load are described. As a result of the research carried out, new properties of the behavior of discrete-continuous systems under power load conditions are revealed. For the first time, the stresses and deformations of both working bodies and media were taken into account to create energy-saving vibration systems for various technological processes. The carried out scientific research makes it possible to obtain the laws of change in the state of dispersed media under the action of power loads by technical systems, new technological and design solutions were proposed.
ISBN 978-617-7319-49-7 (on-line)
ISBN 978-617-7319-50-3 (print)
------------------------------------------------------------------------------------------------------------------
How to Cite: Nazarenko, I., Dedov, O., Bernyk, I., Bondarenko, A., Zapryvoda, A., Nazarenko, M. et. al.; Nazarenko, I. (Ed.) (2021). Dynamic processes in technological technical systems. Kharkiv: РС ТЕСHNOLOGY СЕNTЕR, 196. doi: http://doi.org/10.15587/978-617-7319-49-7
------------------------------------------------------------------------------------------------------------------
Indexing:
INTRODUCTION
by Ivan Nazarenko
https://doi.org/10.15587/978-617-7319-49-7.introduction
CHAPTER 1 Assessment of the current state of parameters and operating modes of technological technical systems
by Ivan Nazarenko, Oleg Dedov, Iryna Bernyk, Andrii Bondarenko, Andrii Zapryvoda, Maxim Nazarenko, Ivan Pereginets
https://doi.org/10.15587/978-617-7319-49-7.ch1
CHAPTER 2 Research of processes of producing materials by technical power loading systems
by Ivan Nazarenko, Yevhen Mishchuk, Mykola Kyzminec, Serhii Oryshchenko, Oleg Fedorenko, Sergii Tsepelev
https://doi.org/10.15587/978-617-7319-49-7.ch2
CHAPTER 3 Research of technical systems of materials sorting processes
by Ivan Nazarenko, Artur Onyshchenko, Serhii Oryshchenko, Oleg Fedorenko, Sergii Tsepelev, Liudmyla Titova
https://doi.org/10.15587/978-617-7319-49-7.ch3
CHAPTER 4 Research of technical systems of processes of mixing materials
by Ivan Nazarenko, Iryna Bernyk, Oleg Dedov, Ivan Rogovskii, Mykola Ruchynskyi, Ivan Pereginets, Liudmyla Titova
https://doi.org/10.15587/978-617-7319-49-7.ch4
CHAPTER 5 Study of technical systems of materials compaction process
by Ivan Nazarenko, Oleg Dedov, Andrii Bondarenko, Andrii Zapryvoda, Mykola Kyzminec, Maxim Nazarenko, Mykola Ruchynskyi, Anatoly Svidersky, Volodymyr Slipetskyi
https://doi.org/10.15587/978-617-7319-49-7.ch5
CHAPTER 6 Research of the processes of acoustic cavitation technology for processing dispersed media
by Ivan Nazarenko, Iryna Bernyk
https://doi.org/10.15587/978-617-7319-49-7.ch6
CHAPTER 7 Study of reliability of technical systems reliability
by Ivan Nazarenko, Maksym Delembovskyi, Oleg Dedov, Artur Onyshchenko, Ivan Rogovskii, Maxim Nazarenko, Igor Zalisko
https://doi.org/10.15587/978-617-7319-49-7.ch7
CHAPTER 8 Research of stress-strain state of elements of technological technical constructions
by Ivan Nazarenko, Oleg Dedov, Maksym Delembovskyi, Yevhen Mishchuk, Mykola Nesterenko, Igor Zalisko, Volodymyr Slipetskyi
https://doi.org/10.15587/978-617-7319-49-7.ch8
References
Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2017). Investigation of vibration machine movement with a multimode oscillation spectrum. Eastern-European Journal of Enterprise Technologies, 6 (1 (90)), 28–36. doi: http://doi.org/10.15587/1729-4061.2017.118731
Nazarenko, I., Gaidaichuk, V., Dedov, O., Diachenko, O. (2018). Determination of stresses and strains in the shaping structure under spatial load. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 13–18. doi: http://doi.org/10.15587/1729-4061.2018.147195
Nazarenko, I. I., Harnets, V. M., Sviderskyi, A. T., Pentiuk, B. M. (2009). Systemnyi analiz tekhnichnykh obiektiv. Kyiv: KNUBA, 164.
Mishchuk, Y., Nazarenko, I., Mishchuk, D. (2021). Definition of rational operating modes of a vibratory jaw crusher. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 4, 56–62. doi: http://doi.org/10.33271/nvngu/2021-4/056
Nazarenko, I., Mishchuk, Y., Mishchuk, D., Ruchynskyi, M., Rogovskii, I., Mikhailova, L. et. al. (2021). Determiantion of energy characteristics of material destruction in the crushing chamber of the vibration crusher. Eastern-European Journal of Enterprise Technologies, 4 (7 (112)), 41–49. doi: http://doi.org/10.15587/1729-4061.2021.239292
Nazarenko, I. I., Oryshchenko, S. V. (2009). Modeliuvannia protsesu rukhu materialu po hrokhotu. Tekhnika budivnytstva. Naukovo-tekhnichnyi zhurnal, 22, 81–84.
Ruchynskyi, M. M., Svyrydiuk, D. Ya. (2013). Doslidzhennia kolyvan vibratsiinoho betonozmishuvacha z urakhuvanniam vplyvu peremishchuvanoho materialu. Tekhnika budivnytstva. Naukovo-tekhnichnyi zhurnal, 31, 35–42.
Nazarenko, I., Ruchynskyi, M., Delembovskyi, M. (2018). The Basic Parameters of Vibration Settings for Sealing Horizontal Surfaces. International Journal of Engineering & Technology, 7 (3.2), 255–259. doi: http://doi.org/10.14419/ijet.v7i3.2.14415
Bernyk, I., Luhovskyi, O., Nazarenko, I. (2018). Effect of rheological properties of materials on their treatment with ultrasonic cavitation. Materiali in Tehnologije, 52 (4), 465–468. doi: http://doi.org/10.17222/mit.2017.021
Nesterenko, M., Nazarenko, I., Molchanov, P. (2018). Cassette Installation with Active Working Body in the Separating Partition. International Journal of Engineering & Technology, 7 (3.2), 265–268. doi: http://doi.org/10.14419/ijet.v7i3.2.14417
Nazarenko, I. I., Ruchynskyi, M. M., Sviderskyi, A. T., Kobylanska, I. M., Harasim, D., Kalizhanova, A., Kozbakova, A. (2019). Development of energy-efficient vibration machines for the buiding-and-contruction industry. Przeglad Elektrotechniczny, 95 (4), 53–59. doi: http://doi.org/10.15199/48.2019.04.10
Bernyk, I., Luhovskyi, O., Wojcik, W., Shedreyeva, I., Karnakova, G. (2019). Theoretical Investigations of the Interaction of Acoustic Apparatus with Technological Environment Working Process. Przeglad Elektrotechniczny, 1 (4), 32–37. doi: http://doi.org/10.15199/48.2019.04.06
Luhovskyi, O., Bernyk, I., Gryshko, I., Abdulina, D., Zilinskyi, A.; Stryczek, J., Warzyńska, U. (Eds.) (2021). Mobile Equipment for Ultrasonic Cavitation Inactivation of Microorganisms in the Liquid Environment. NSHP 2020. Lecture Notes in Mechanical Engineering. Cham: Springer, 272–281. doi: http://doi.org/10.1007/978-3-030-59509-8_24
Babič, M., Calì, M., Nazarenko, I., Fragassa, C., Ekinovic, S., Mihaliková, M. et. al. (2018). Surface roughness evaluation in hardened materials by pattern recognition using network theory. International Journal on Interactive Design and Manufacturing, 13 (1), 211–219. doi: http://doi.org/10.1007/s12008-018-0507-3
Nesterenko, M. P., Molchanov, P. O., Savyk, V. M., Nesterenko, M. M. (2019). Vibration platform for forming large-sized reinforced concrete products. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 74–78. doi: http://doi.org/10.29202/nvngu/2019-5/8
Nesterenko, M., Nesterenko, T., Skliarenko, T. (2018). Theoretical Studies of Stresses in a Layer of a Light-Concrete Mixture, Which is Compacted on the Shock-Vibration Machine. International Journal of Engineering & Technology, 7 (3.2), 419–424. doi: http://doi.org/10.14419/ijet.v7i3.2.14564
Dmitrenko, A., Lebedyk, G., Nesterenko, M. (2018). Product Cost Calculation Methods in Construction. International Journal of Engineering & Technology, 7 (3.2), 6–11. doi: http://doi.org/10.14419/ijet.v7i3.2.14367
Nazarenko, I., Dedov, O., Bernyk, I., Rogovskii, I., Bondarenko, A., Zapryvoda, A. et. al. (2020). Determining the regions of stability in the motion regimes and parameters of vibratory machines for different technological purposes. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 71–79. doi: http://doi.org/10.15587/1729-4061.2020.217747
Nazarenko, I., Svidersky, A., Kostenyuk, A., Dedov, O., Kyzminec, N., Slipetskyi, V. (2020). Determination of the workflow of energy-saving vibration unit with polyphase spectrum of vibrations. Eastern-European Journal of Enterprise Technologies, 1 (7 (103)), 43–49. doi: http://doi.org/10.15587/1729-4061.0.184632
Nazarenko, I., Gavryukov, O., Klyon, A., Ruchynsky, N. (2018). Determination of the optimal parameters of a tubular belt conveyor depending on such an economical. Eastern-European Journal of Enterprise Technologies, 3 (1 (93)), 34–42. doi: http://doi.org/10.15587/1729-4061.2018.131552
Baladinskyi, V. L., Nazarenko, I. I., Onyshchenko, O. H. (2002). Budivelna tekhnika. Kyiv – Poltava: KNUBA-PNTU, 463.
Nazarenko, I. I. (2010). Prykladni zadachi teorii vibratsiinykh system. Kyiv: Vydavnychyi Dim «Slovo», 440.
Nazarenko, I., Mishchuk, E., Kuchinsky, V. (2019). Assessment and analysis of basic design the cone crushers. Gіrnichі, budіvelnі, dorozhnі ta melіorativnі mashini, 94, 5–15. Available at: http://gbdmm.knuba.edu.ua/article/view/216440
Lapin, R., Kuzkin, V. (2019). Calculation of the normal and shear compliances of a three-dimensional crack taking into account the contact between the crack surfaces. Letters on Materials, 9 (2), 234–238. doi: http://doi.org/10.22226/2410-3535-2019-2-234-238
Zou, J., Han, J., Yang, W. (2020). Investigating the Influences of Indentation Hardness and Brittleness of Rock-Like Material on Its Mechanical Crushing Behaviors. Mathematical Problems in Engineering, 2020. doi: http://doi.org/10.1155/2020/4713532
Vasiliev, L. M., Vasiliev, D. L., Malich, M. G. (2021). Modeling the process of disintegration of solid materials by asymmetric loading in crushing machines in order to find ways to reduce energy costs. Energy- and resource-saving technologies of developing the raw-material base of mining regions. Petroșani: UNIVERSITAS Publishing, 457–473. doi: http://doi.org/10.31713/m1028
Hong, S. J., Yang, H. J. (2019). A Study on the Impact Load Quantification of the Jaw Crusher. Journal of Drive and Control, 16 (2), 1–7. doi: https://doi.org/10.7839/KSFC.2019.16.2.001
Blokhin, V. S., Bolshakov, V. I., Malich, N. G. (2006). Osnovnye parametry tekhnologicheskikh mashin. Mashiny dlia dezintegratsii tverdykh materialov. Part. І. Dnepropetrovsk: IMA-press, 404.
Vaisberg, L. A., Zarogatskii, L. P., Turkin, V. Ia. (2004). Vibratsionnye drobilki. Osnovy rascheta, proektirovaniia i tekhnologicheskogo primeneniia. Saint Petersburg: Izd-vo VSEGEI, 306.
Blekhman, I. I., Dzhanelidze, G. Iu. (1964). Vibratsionnoe peremeschenie. Moscow: Nauka, 412.
Vaisberg, L. A. (1986). Proektirovanie i raschety vibratsionnykh grokhotov. Moscow: Nedra, 144.
Venttsel, E. S., Ovcharov, L. A. (2000). Teoriia veroiatnosti i ee inzhenernye prilozheniia. Moscow: Vysshaia shkola, 480.
Nadutyi, V. P., Kalinichenko, V. V. (2004). Vibratsionnoe grokhochenie gornoi masy povyshenoi vlazhnosti. Dnepropetrovsk: NGU Ukrainy, 135.
Nazarenko, I. I. (1999). Mashyny dlia vyrobnytstva budivelnykh materialiv. Kyiv: KNUBA, 488.
Oryshchenko, S. V. (2010). Teoretychni doslidzhennia ta vyznachennia osnovnykh etapiv rukhu vibratsiinoho hrokhota. Tekhnika budivnytstva, 24, 44–47.
Oryshchenko, S. V. (2009). Eksperymentalni doslidzhennia robochykh parametriv vibratsiinoho hrokhota. Tekhnika budivnytstva, 23, 88–91.
Nazarenko, I. I., Tumanska, O. V. (2004). Mashyny i ustatkuvannia pidpryiemstv budivelnykh materialiv. Konstruktsii ta osnovy ekspluatatsii. Kyiv: Vyshcha shkola, 590.
Emelianova, I. A., Dobrokhodova, O. V., Anischenko, A. I. (2010). Sovremennye stroitelnye smesi i oborudovanie dlia ikh prigotovleniia. Kharkiv: Timchenko, 146.
Bogomolov, A. A. (2010). Teoreticheskie i tekhnicheskie osnovy sovershenstvovaniia smesitelnykh mashin dlia prigotovleniia stroitelnykh smesei. Belgorod: Iz-vo BGTU, 151.
Maslov, A. G., Ponomar, V. M. (1985). Vibratsionnye mashiny i protsessy v dorozhnom stroitelstve. Kyiv: Budіvelnik, 128.
Nazarenko, I. I. (2007). Vibratsiini mashyny i protsesy budivelnoi industrii. Kyiv: KNUBA, 230.
Klets, D., Gritsuk, I. V., Makovetskyi, A., Bulgakov, N., Podrigalo, M., Kyrychenko, I. et. al. (2018). Information Security Risk Management of Vehicles. SAE Technical Paper Series. doi: http://doi.org/10.4271/2018-01-0015
Dubovenko, Y. I., Kuzminets, M. P. (2017). The experience of integrating of GIS techniques in the construction of digital maps of geophysical fields. 16th International Conference on Geoinformatics – Theoretical and Applied Aspects. doi: http://doi.org/10.3997/2214-4609.201701851
Dubovenko, Y. I., Shumlianska, L. A., Kuzminets, M. P. (2020). Seismic velocity gradient stratification of the mantle at Ukrainian Shield. Geoinformatics: Theoretical and Applied Aspects 2020. doi: http://doi.org/10.3997/2214-4609.2020geo063
Dubovenko, Y. I., Chorna, O. A., Kuzminets, M. P. (2020). Modeling of the potential fields transformants for the ring structure Illinetska. Geoinformatics: Theoretical and Applied Aspects 2020. doi: http://doi.org/10.3997/2214-4609.2020geo062
Nazirova, A. B., Dubovenko, Y. I., Abdoldina, F. N., Kuzminets, M. P. (2021). Optimization of GIS modules for processing data of gravity monitoring of subsoil in the Republic of Kazakhstan. Geoinformatics. doi: http://doi.org/10.3997/2214-4609.20215521136
Onishchenko, A., Koretskyi, A., Bashkevych, I., Ostroverkh, B., Bieliatynskyi, A. (2020). Dam Failure Model and Its Influence on the Bridge Construction. Advances in Intelligent Systems and Computing, 229–237. doi: http://doi.org/10.1007/978-3-030-57450-5_21
Onishchenko, A., Lapchenko, A., Fedorenko, O., Bieliatynskyi, A. (2020). Research of the Properties of Bitumen Modified by Polymer Latex. Advances in Intelligent Systems and Computing, 104–116. doi: http://doi.org/10.1007/978-3-030-57450-5_10
Kovalchuk, V., Kravets, I., Nabochenko, O., Onyshchenko, A., Fedorenko, O., Pentsak, A. et. al. (2021). Devising a procedure for assessing the subgrade compaction degree based on the propagation rate of elastic waves. Eastern-European Journal of Enterprise Technologies, 1 (5 (109)), 6–15. doi: http://doi.org/10.15587/1729-4061.2021.225520
Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stresseddeformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: http://doi.org/10.15587/1729-4061.2020.213525
Lantukh-Lyashchenko, A., Onishchenko, A., Davydenko, O. (2020). Problem of the degradation criteria for transportation construction elements. E3S Web of Conferences, 164, 03014. doi: http://doi.org/10.1051/e3sconf/202016403014
Kaletnik, H., Sevostianov, I., Bulgakov, V., Holovach, I., Melnik, V., Ihnatiev, Ye., Olt, J. (2020). Development and examination of high-performance fluidised-bed vibration drier for processing food production waste. Agronomy Research, 18 (4), 2391–2409. doi: http://doi.org/10.15159/ar.20.234
Bulgakov, V., Sevostianov, I., Kaletnik, G., Babyn, I., Ivanovs, S., Holovach, I., Ihnatiev, Y. (2020). Theoretical Studies of the Vibration Process of the Dryer for Waste of Food. Rural Sustainability Research, 44 (339), 32–45. doi: http://doi.org/10.2478/plua-2020-0015
Kaletnik, G., Tsurkan, O., Rimar, T., Stanislavchuk, O. (2020). Determination of the kinetics of the process of pumpkin seeds vibrational convective drying. Eastern-European Journal of Enterprise Technologies, 1 (8 (103)), 50–57. doi: http://doi.org/10.15587/1729-4061.2020.195203
Bernyk, I. M. (2011). Osnovni zasady proektuvannia mashyn i obladnannia pererobnykh vyrobnytstv. Teoriia i praktyka budivnytstva, 8, 6–9.
Vitenko, T. M. (2009). Hidrodynamichna kavitatsiia u masoobminnykh, khimichnykh i biolohichnykh protsesakh. Ternopil: Vydavnytstvo TDTU im. I Puliuia, 224.
Khmelev, V. N., Slivin, A. N., Barsukov, R. V., Tsyganok, S. N., Shalunov, A. V. (2010). Primenenie ultrazvuka vysokoi intensivnosti v promyshlennosti. Biisk: Izd-vo Alt. gos. tekhn. un-ta, 203.
Luhovskyi, O. F., Bernyk, I. M. (2014). Vstanovlennia osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyi protses ultrazvukovoi kavitatsiinoi obrobky. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (75), 121–126.
Bernyk, I. M. (2015). Enerhetyka kavitatsiinoi obrobky tekhnolohichnoho seredovyshcha. Naukovi pratsi ONAKhT, 1 (47), 123–129.
Luhovskaia, E. A., Yakhno, O. M., Bernyk, Y. N. (2012). Model of Technological Process of Ultrasonic Clearing of Elastic Surfaces Management. Naukovi pratsi Don NTU. Seriia: Hirnycho-elektromekhanichna, 23 (196), 154–166.
Luhovskyi, O. F., Gryshko, I. A., Bernyk, I. M. (2018). Enhancing the Efficiency of Ultrasonic Wastewater Disinfection Technology. Journal of Water Chemistry and Technology, 40 (2), 95–101. doi: http://doi.org/10.3103/s1063455x18020078
Bernyk, I., Luhovskyi, O., Nazarenko, I. (2016). Research staff process of interaction and technological environment in developed cavitation. Journal of Mechanical Engineering the National Technical University of Ukraine “Kyiv Polytechnic Institute”, 1 (76), 12–19. doi: http://doi.org/10.20535/2305-9001.2016.76.39735
Bernyk, I. M. (2013). Intensification of technological processes of treatment of food environments. Vibratsii v tekhnitsi ta tekhnolohiiakh, 3 (71), 109–115.
Bernyk, I. M. (2014). Doslidzhennia parametriv kavitatsiinoho protsesu obrobky tekhnolohichnykh seredovyshch. Naukovo-tekhnichnyi zhurnal Tekhnika budivnytstva, 33, 21–26.
Bernyk, I. M. (2018). Investigation of the viscosity of dispersed media under conditions of their intensive processing. Tekhnika, enerhetyka, transport APK, 1 (100), 62–67.
Ohirko, O. I., Halaiko, N. V. (2017). Teoriia ymovirnostei ta matematychna statystyka. Lviv: LvDUVS, 292.
Sirotiuk, M. G., Gavrilov, L. R. (2008). Akusticheskaia kavitatsiia. Moscow: Nauka, 271.
Goliamina, I. P. (Ed.) (1979). Ultrazvuk. Malenkaia entsiklopediia. Moscow: Sovetskaia entsiklopediia, 400.
Nazarenko, I. I., Sviderskyi, A. T., Delembovskyi, M. M. (2013). Doslidzhennia nadiinosti kardannykh valiv vibromashyn budivelnoi industrii. Vibratsii v tekhnitsi ta tekhnolohiiakh. VNAU, 3 (71), 72–77.
Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Doslidzhennia na osnovi nechitkoi lohiky modeli vyiavlennia vidmov vibroploshchadok. Zbirnyk naukovykh prats ΛΌHOΣ, 111–112. doi: https://doi.org/10.36074/25.12.2020.v1.38
Delembovskyi, M., Klymenko, M. (2020). Metody pidvyshchennia nadiinosti ta efektyvnosti vibratsiinykh mashyn budivelnoi industrii. ICSR Conference Proceedings, 48–49. doi: http://doi.org/10.36074/23.10.2020.v1.04
Delembovskyi, M., Klymenko, M. (2020). Zabezpechennia nadiinosti vibratsiinykh maidanchykiv budivelnoi industrii z urakhuvanniam metodiv analizu. Zbirnyk naukovykh prats ΛΌHOΣ, 26–28. doi: http://doi.org/10.36074/09.10.2020.v2.06
Delembovskyi, M., Terentiev, O., Shabala, Ye. (2020). Echnology of implementation of the matlab environment in the investigation model of information security threatS. ΛΌHOΣ mystetstvo naukovoi dumky. doi: http://doi.org/10.36074/2663-4139.15.08
Delembovskyi, M., Klymenko, M., Korniichuk, B. (2020). Rozrobka modeli otsinky nadiinosti vibroploshchadky na osnovi nechitkoi lohiky. Zbirnyk naukovykh prats ΛΌHOΣ, 98–102. doi: http://doi.org/10.36074/11.12.2020.v2.28
Nazarenko, I., Sviderskii, A. T., Delembovskii, M. M. (2015). Issledovanie nadezhnosti vibromashin stroitelnoi industrii. Mekhanizatsiia stroitelstva, 3, 44–49.
Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: http://doi.org/10.1615/jautomatinfscien.v44.i7.40
Domin, D. (2013). Artificial orthogonalization in searching of optimal control of technological processes under uncertainty conditions. Eastern-European Journal of Enterprise Technologies, 5 (9 (65)), 45–53. doi: http://doi.org/10.15587/1729-4061.2013.18452
Rogovskii, I. L., Delembovskyi, M. M., Voinash, S. A., Scherbakov, A. P., Teterina, I. A., Sokolova, V. A. (2021). Reliability indexes of vibrating platforms for compaction of construction mixtures. IOP Conference Series: Materials Science and Engineering, 1047 (1), 012026. doi: http://doi.org/10.1088/1757-899x/1047/1/012026
Kovalchuk, V., Onyshchenko, A., Fedorenko, O., Habrel, M., Parneta, B., Voznyak, O. et. al. (2021). A comprehensive procedure for estimating the stressed-strained state of a reinforced concrete bridge under the action of variable environmental temperatures. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 23–30. doi: http://doi.org/10.15587/1729-4061.2021.228960
Petrov, A. A. (2002). Teoriia i proektirovanie vibratsionnykh mashin impulsnogo i rezonansnogo deistviia. Khmelnitskii: Tekhnologicheskii un-t Podolіia, 182.
Bazhenov, V. A., Dashchenko, A. F., Orobei, V. F., Surianov, N. H. (2004). Chyselnie metodi v mekhanyke. Odessa: Draft, 564.
Bathe, K. J. (1996). Finite Element Procedures. New-York: Prentice Hall, 1037.
Lanets, O., Derevenko, I., Borovets, V., Kovtonyuk, M., Komada, P., Mussabekov, K., Yeraliyeva, B. (2019). Substantiation of consolidated inertial parameters of vibrating bunker feeder. Przeglad Elektrotechniczny, 95 (4), 47–52. doi: http://doi.org/10.15199/48.2019.04.09
Gursky, V., Kuzio, I., Lanets, O., Kisała, P., Tolegenova, A., Syzdykpayeva, A. (2019). Implementation of dual-frequency resonant vibratory machines with pulsed electromagnetic drive. Przegląd Elektrotechniczny, 95 (4), 43–48. doi: http://doi.org/10.15199/48.2019.04.08
Nazarenko, I. I., Nesterenko, T. M., Nesterenko, M. M., Marchenko, I. A. (2020). Kompiuterne modeliuvannia elementiv vibratsiinykh mashyn. Kompiuterna matematyka v nautsi, inzhenerii ta osviti (CMSEE-2020), 36–38.
Nazarenko, I. I., Smirnov, V. M., Fomin, A. V., Sviderskyi, A. T., Kosteniuk, O. O., Diedov, O. P., Zukhba, A. H.; Nazarenko, I. I. (Ed.) (2010). Osnovy teorii vzaiemodii robochykh orhaniv budivelnykh mashyn iz napruzheno-deformovanym seredovyshchem. Kyiv: «MP Lesia», 216.
Nesterenko, M. M., Nesterenko, T. M., Mahas, N. M. (2017). Method of calculation of shock-vibrating machinefor manufacturing products from light concrete for energy efficient reconstruction buildings in Ukraine. Naukovyi visnyk budivnytstva, 88 (2), 178–182.
Nazarenko, I. I., Dedov, O. P., Sviderski, A. T., Ruchinski, N. N. (2017). Research of energy-saving vibration machines with account of the stress-strain state of technological environment. The IX International Conference HEAVY MACHINERY HM 2017, 21–24.